DOI: 10.17586/1023-5086-2024-91-07-109-120
УДК: 539.32; 537.226.4
Stability of acousto-optical converter properties based on polyvinylidene fluoride films under external influence
Full text on elibrary.ru
Осипков А.С., Макеев М.О., Солодилов В.И., Моисеев К.М., Михалев П.А., Макарова К.Т., Еманов Д.П., Паршин Б.А., Хромова М.А. Исследование стабильности свойств акустооптических преобразователей на основе пленок поливинилиденфторида при воздействии внешних факторов // Оптический журнал. 2024. Т. 91. № 7. С. 109–120. http://doi.org/10.17586/1023-5086-2024-91-07-109-120
Osipkov A.S., Makeev M.O., Solodilov V.I., Moiseev K.M., Mikhalev P.A., Makarova K.T., Emanov D.P., Parshin B.A., Khromova M.A. Stability of acousto-optical converter properties based on polyvinylidene fluoride films under external influence [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 7. P. 109–120. http://doi.org/10.17586/1023-5086-2024-91-07-109-120
Subject of study. Acousto-optical modulator based on a polyvinylidene fluoride film film with transparent indium tin oxide electrodes deposited on both its surfaces. Aim of study. Study of the stability of mechanical, piezoelectric and optical properties of acousto-optical modulators based on polyvinylidene fluoride film with indium tin oxide electrodes during its manufacture and operation under conditions of exposure to low and high temperatures. Method. Measurement of the mechanical characteristics of samples under tension at room temperature for two drawing directions (along and across the direction of drawing of the polyvinylidene fluoride film); study by dynamic mechanical analysis under isothermal conditions and at temperature range from 30 to 180 °С; measurement of the piezoelectric coefficient d33 under temperature influence in the range from –40 to +80 °C by a method based on measuring the induced charge on the surface of the electrodes generated by a pulsed force effect when a ball falls; measurement of transmittance in the visible wavelength range from 380 to 780 nm and calculation of light transmittance coefficient. Main results. An experimental measurement cell has been created that makes it possible to measure the piezoelectric coefficient d33 in a wide temperature range, the results of mechanical tests under static and dynamic loading of the polyvinylidene fluoride film before and after deposition of indium tin oxide electrodes have been obtained, the temperature dependences of the coefficient d33 have been obtained for the such structure in the temperature range from –40 to +80 °C, results of measuring the optical properties of samples after exposure to low and high temperatures were obtained. Practical significance. Based on the obtained data, recommendations were developed for the operating and storage conditions of acousto-optic devices based on the structures under study, as well as technological modes for its manufacturing.
acousto-optical modulator, polyvinylidene fluoride, piezoelectric coefficients, mecha-nical characteristics, temperature dependence, optical properties, indium tin oxide
Acknowledgements:the research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (theme coefficient № FSFN-2022-0007).
OCIS codes: 160.1050, 160.5470
References:1. Кочервинский В.В. Свойства и применение фторсодержащих полимерных пленок с пьезо- и пироактивностью // Успехи химии. 1994. Т. 63. № 4. С. 383–388.
Kochervinskii V.V. The properties and applications of fluorine-containing polymer films with piezo- and pyro-activity // Russ. Chem. Rev. 1964. V. 63. P. 367–371. https://doi.org/10.1070/RC1994v063n04ABEH000090
2. Kim K.L., Wonho L., Sun K.H., et al. Epitaxial growth of thin ferroelectric polymer films on graphene layer for fully transparent and flexible nonvolatile memory // Nano. Lett. 2016. V. 16. № 1. P. 334–340. https://doi.org/10.1021/acs.nanolett.5b03882
3. Chen X., Han X., Qun-Dong S. PVDF-based ferroelectric polymers in modern flexible electronics // Adv. Electron. Mater. 2017. V. 5. № 5. P. 1600460. https://doi.org/10.1002/aelm.201600460
4. Mohammadpourfazeli S., Arash S., Ansari A., et al. Future prospects and recent developments of polyvinylidene fluoride (PVDF) piezoelectric polymer; fabrication methods, structure, and electro-mechanical properties // RSC Adv. 2023. V. 13. № 1. P. 370–387. https://doi.org/10.1039/d2ra06774a
5. Han X., Chen X., Tang X., et al. Flexible polymer transducers for dynamic recognizing physiological signals // Adv. Funct. Mater. 2016. V. 26. № 21. P. 3640–3648. https://doi.org/10.1002/adfm.201600008
6. Wang X., Yang B., Liu J., et al. A flexible triboelectric-piezoelectric hybrid nanogenerator based on P (VDF-TrFE) nanofibers and PDMS/MWCNT for wearable devices // Sci. Rep. 2016. V. 6. № 1. P. 36409. https://doi.org/10.1038/srep36409
7. Lu L., Ding W., Liu J., et al. Flexible PVDF based piezoelectric nanogenerators // Nano Energy. 2020. V. 78. P. 105251. https://doi.org/10.1016/j.nanoen.2020.105251
8. Tripathi A.K., Van Breemen A.J., Shen J., et al. Multilevel information storage in ferroelectric polymer memories // Adv. Mater. 2011. V. 23. № 36. P. 4146–4151. https://doi.org/10.1002/adma.201101511
9. Shin K.Y., Lee J.S., Jang J. Highly sensitive, wearable and wireless pressure sensor using free-standing ZnO nanoneedle / PVDF hybrid thin film for heart rate monitoring // Nano Energy. 2016. V. 22. P. 95–104. https://doi.org/10.1016/j.nanoen.2016.02.012
10. Makeev M.O., Osipkov A.S., Batshev V.I., et al. Investigation of the phase delay of radiation by a transparent ferroelectric polymer film // J. Phys. Conf. Ser. V. 2127. № 1. P. 012048. https://doi.org/10.1088/1742-6596/2127/1/012048
11. Minami T., Sonohara H., Kakumu T., et al. Physics of very thin ITO conducting films with high transparency prepared by DC magnetron sputtering // Thin Solid Films. 1995. V. 270. № 1–2. P. 37–42. https://doi.org/10.1016/0040-6090(95)06889-9
12. Sugimoto T., Ono K., Ando A., et al. PVDF-driven flexible and transparent loudspeaker // Appl. Acoust. 2009. V. 70. № 8. P. 1021–1028. https://doi.org/10.1016/j.apacoust.2009.03.007
13. Xin Y., Li X., Tian H., et al. A fingerprint sensor based on PVDF film for a manipulator // Integr. Ferroelectr. 2017. V. 183. № 1. P. 91–99. https://doi.org/10.1080/10584587.2017.1375819
14. Osipkov A., Makeev M., Konopleva Е., et al. Optically transparent and highly conductive electrodes for acousto-optical devices // Materials. 2021. V. 14. № 23. P. 7178. https://doi.org/10.3390/ma14237178
15. Meng N., Ren X., Zhu X., et al. Multiscale understanding of electric polarization in poly (vinylidene fluoride)-based ferroelectric polymers // J. Mater. Chem. C. V. 8 № 46. P. 16436–16442. https://doi.org/10.1039/d0tc04310a
16. Yuan X., Gao X., Yang J., et al. The large piezoelectricity and high power density of a 3D-printed multilayer copolymer in a rugby ball-structured mechanical energy harvester // Energy Environ. 2020. V. 13. № 1. P. 152–161. https://doi.org/10.1039/c9ee01785b
17. Шарапов В.М., Мусиенко М.П., Шарапова Е.В. Пьезоэлектрические датчики / Под ред. Шарапова В.М. М.: Техносфера, 2006. 632 с.
Sharapov V.M., Musienko M.P., Sharapova E.V. Piezoelectric sensors [in Russian] / Ed. Sharapov V.M. Moscow: "Technosphera" Publ., 2006. 632 p.
18. Avanci L.H., Cardoso L.P., Girdwood S.E., et al. Piezoelectric coefficients of mNA organic nonlinear optical material using synchrotron X-ray multiple diffraction // Phys. Rev. Lett. 1998. V. 81. № 24. P. 5426. https://doi.org/10.1103/PhysRevLett.81.5426
19. Котлярский Л.Б., Школьник И.Э. Определение пьезо-модуля методом падающего шарика // Акустический журнал. 1963. Т. 9. № 2. С. 238–239.
Kotlyarskii L.B., Shkol'nik I.E. Determination of piezomodulus by a falling ball method [in Russian] // Akusticheskij Zhurnal. 1963. V. 9. № 2. P. 238–239.
20. Браун Э.Д., Буяновский И.А., Воронин Н.А. и др. Современная трибология: итоги и перспективы / Под ред. Фроловa К.В. М: ЛКИ, 2008. 480 с.
Braun E.D., Buyanovsky I.A., Voronin N.A., et al. Modern tribology: Results and prospects [in Russian] / Ed. Frolov K.V. Moscow: LKI Publ., 2008. 480 p.
21. Stewart M. Characterisation of ferroelectric bulk materials and thin films. Dordrecht: Springer Netherlands, 2014. 290 p.
22. Solodilov V., Kochervinskii V., Osipkov A., et al. Structure and thermomechanical properties of polyvinylidene fluoride film with transparent indium tin oxide electrodes // J. Polym. 2023. V. 15. № 6. P. 1483. https://doi.org/10.3390/polym15061483
23. Дмитриев И.Ю., Гладченко С.В., Афанасьева Н.В. и др. Молекулярная подвижность поливинилиденфторида в анизотропном состоянии // Высокомолекулярные соединения. 2008. Т. 50А. № 3. С. 424–433.
Dmitriev I.Y., Gladchenko S.V., Afanasyeva N.V., et al. Molecular mobility of polyvinylidene fluoride in an anisotropic state // Polym. Sci. Ser. A. 2008. V. 50A. № 3. P. 265–272. https://doi.org/10.1134/S0965545X08030048
24. Hattori T., Kanaoka M., Ohigashi H. Improved piezoelectricity in thick lamellar b-form crystals of poly (vinylidene fluoride) crystallized under high pressure // J. Appl. Phys. 1996. V. 79. № 4. P. 2016–2022. https://doi.org/10.1063/1.361055
25. Kochervinskii V.V., Buryanskaya E.L., Makeev M.O., et al. Effect of composition and surface microstructure in self-polarized ferroelectric polymer films on the magnitude of the surface potential // J. Nanomater. 2023. V. 13. № 21. P. 2851. https://doi.org/10.3390/nano13212851
26. Wen J.X. Piezoelectricity and pyroelectricity in a copolymer of vinylidene fluoride and tetrafluoroethylene // J. Polym. 1985. V. 17. № 2. P. 399–407. https://doi.org/10.1295/polymj.17.399
27. Kochervinskii V.V., Buryanskaya E.L., Osipkov A.S., et al. The domain and structural characteristics of ferroelectric copolymers based on vinylidene fluoride copolymer with tetrafluoroethylene composition (94/6) // J. Polym. 2024. V. 16. № 2. P. 233. https://doi.org/10.3390/polym16020233