ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-07-37-44

УДК: 535.8

Short-wave infrared imaging spectrometer based on tandem acousto-optical tunable filter

For Russian citation (Opticheskii Zhurnal):

Баландин И.А., Шарикова М.О., Батшев В.И., Варнавская Д.В., Козлов А.Б. Видеоспектрометр ближнего инфракрасного диапазона с использованием двойного акустооптического фильтра // Оптический журнал. 2024. Т. 91. № 7. С. 37–44. http://doi.org/10.17586/1023-5086-2024-91-07-37-44

 

Balandin I.A., Sharikova М.O., Batshev V.I., Varnavskaya D.V., Kozlov A.B. Short-wave infrared imaging spectrometer based on tandem acousto-optical tunable filter [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 1. P. 37–44. http://doi.org/10.17586/1023-5086-2024-91-07-37-44

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Methods for design optical schemes of acousto-optical hyperspectral devices for applied problems. Goal of the work. Development of hyperspectral device with tandem acousto-optical tunable filter for range of 0.85–1.6 µm. Method. The design of the optical system of the hyperspectral device was performed in ZEMAX using the original software module. The simulation results were confirmed experimentally. Main results. Short-wave infrared hyperspectral device has been developed and manufactured. The device uses an InGaAs sensor and implements tandem acousto-optic filtration to improve the spatial and spectral resolution. Due to the use of an afocal optical system at the entrance, the angular field of view is 8ґ12°. The device allows to obtain spectral images of objects located at a shooting distance of 1 m or more, and provides a spatial resolution of about 200ґ150 resolvable elements within the field of view. The spectral bandwidth is 12 nm (at a wavelength of 1.06 µm). Practical significance. The hyperspectral device was developed for agricultural applications, but this class of devices is widely used in many other tasks: in remote sensing, for biomedical diagnostics, and in non-destructive testing of technical objects.

Keywords:

acousto-optics, spectral imaging, tandem acousto-optical tunable filter, short-wave infrared range

Acknowledgements:

the work was carried out within the framework of the State Assignment of the STC UP RAS (project FFNS-2022-0010). The results were obtained using the equipment of the Center for Collective Use of the STC UP RAS.

OCIS codes: 130.3120, 230.1040, 120.6200, 110.4234

References:

1.    Chang C.-I. Hyperspectral data exploitation: Theory and applications. Wiley-Interscience, 2007. 440 p.

2.   Pustovoit V.I., Pozhar V.E., Otlivanchik E.A., et al. Modern means and methods of acousto-optical spectrometry [in Russian] // Advances in Modern Radio Electronics. 2007. № 8. P. 48–56.

3.   Martynov G.N., Gaponov M.I., Fomin D.S., et al. Imaging spectrometer based on a tunable acousto-optical filter for field surveys [in Russian] // Acousto-optical and Radar Methods of Measurements and Information Processing. Collection of works of MNTK. 2019. P. 156–158.

4.   Pozhar V.E., Pustovoit V.I. Possibilities of new imaging systems development on the base of acousto-opticalimaging spectrometers // J. Communications Technology and Electronics. 1996. V. 41. № 10. P. 1272–1278.

5.   Mazur M.M., Suddenok Y.A., Shorin V.N. Double acousto-optic monochromator of images with tunable width of the transmission function // Technical Physics Letters. 2014. V. 40 № 2. P. 167–169. https://doi.org/10.1134/S1063785014020254

6.   Golovynskyi S., Golovynska I., Stepanova L.I., et al. Optical windows for head tissues in near-infrared and short-wave infrared regions: Approaching transcranial light applications // J. Biophotonics. 2018. V. 11. № 12. P. e201800141. https://doi.org/10.1002/jbio.201800141

7.    Hennessy A., Clarke K., Lewis M. Hyperspectral classification of plants: A review of waveband selection generalisability // Remote Sens. 2020. № 12. P. 113. https://doi.org/10.3390/rs12010113

8.   Batshev V., Machikhin A., Martynov G., et al. Polarizer-free AOTF-based SWIR hyperspectral imaging for biomedical applications // Sensors. 2020. V. 20. P. 4439. https://doi.org/10.3390/s20164439.

9.   Mazur M.M. Criterion for the sameness of AO cells for double monochromators [in Russian] // Proc. Sci. Works of VNIIFTRI-M. 2005. P. 48–52.

10. Epikhin V.M., Vizen F.L., Nikitin N.V., et al. Non-collinear acousto-optic filter with optimal angular characteristics [in Russian] // J. Technical Physics. 1982. T. 52. № 12. P. 2405–2410.

11.  Machikhin A.S., Batshev V.I., Pozhar V.E., et al. Minimizing aberrations of a near-infrared acousto-optic video spectrometer by optimizing the tunable filter parameters // J. Opt. Technol. 2019. V. 86. № 12. P. 794–798. https://doi.org/10.1364/JOT.86.000794

12.  Pozhar V.E., Pustovoit V.I., Mazur M.M., et al. Acousto-optical video monochromator for filtering optical images // RF Patent № RU2258206C1. Bull. 2005. № 22.

13.  Epikhin V.M., Kiyachenko Yu.F., Mazur M.M., et al. Acousto-optical imaging spectrometers in the visible and near-IR ranges [in Russian] // Physical Foundations of Instrumentation. 2013. V. 2. № 4. P. 116–125. https://doi.org/10.25210/jfop-1304-116125

14.  Machikhin A., Batshev V., Pozhar V. Aberration analysis of AOTF-based spectral imaging systems // JOSA. A. 2017. V. 34. № 7. P. 1109–1113. https://doi.org/10.1364/JOSAA.34.001109

15.  M. O. Sharikova, I. A. Balandin, V. I Batshev, and A. B. Kozlov, "Spatial and spectral correction of an acousto-optical imaging spectrometer," J. Opt. Technol. 90, 684-690 (2023). https://doi.org/10.1364/JOT.90.000684