DOI: 10.17586/1023-5086-2024-91-07-45-50
УДК: 535.8
Development of the prototype of an acousto-optical stereoscopic imaging spectrometer
Full text on elibrary.ru
Батшев В.И., Кананыхин О.А., Пожар В.Э., Мартьянов П.С. Разработка макета акустооптического стереоскопического видеоспектрометра // Оптический журнал. 2024 Т. 91 № 7 С. 45–50. http://doi.org/10.17586/1023-5086-2024-91-07-45-50
Batshev V.I., Kananykhin O.A., Pozhar V.E., Martyanov P.S. Development of the prototype of an acousto-optical stereoscopic imaging spectrometer [in Russian] // Opticheskii Zhurnal. 2024 V. 91 № 7. P. 45–50. http://doi.org/10.17586/1023-5086-2024-91-07-45-50
Subject of study. Device for stereoscopic visualization of objects in various spectral ranges. Aim of study. Development of a stereoscopic spectrometer layout based on a tunable acousto-optical filter. Method. An original symmetric scheme for filtering two light beams (stereo pairs) in one acousto-optical cell with beam separation in the azimuthal plane is implemented. Main results. A prototype device has been assembled in the form of an experimental stand containing an acousto-optical filter, a prism-lens optical system and a video camera with a lens. Images of test objects demonstrating the spectral sensitivity of the device were obtained. Practical significance. The layout of the developed stereo spectrometer, capable of simultaneously receiving spatial and spectral information about an object, can become a prototype device for solving various machine vision problems, including in an out-of-laboratory environment.
acousto-optic filtration, stereoscopy, imaging spectrometry, wide-aperture diffraction, two-channel acousto-optical system
Acknowledgements:the work was carried out within the framework of the State task of the STC UP RAS (FFNS-2022-0010 project). The experiments were conducted on the basis of the Center for Collective Use of the STCUP RAS.
OCIS codes: 170.1065, 300.0300, 300.6320
References:1. Dong X., Jakobi M., Wang S., et al. A review of hyperspectral imaging for nanoscale materials research // Appl. Spectrosc. Rev. 2019. № 54(4). P. 285–305. http://dx.doi.org/10.1080/05704928.2018.1463235
2. Roth G.A., Tahiliani S., Neu-Baker N.M., et al. Hyperspectral microscopy as an analytical tool for nanomaterials // Wiley Interdiscip. Rev.: Nanomed. Nanobiotechnol. 2015. № 7(4). P. 565–579. https://doi.org/10.1002/wnan.1330
3. Lu G., Fei B. Medical hyperspectral imaging: a review // J. Biomed. Opt. 2014. № 19(1). P. 010901. https://doi.org/10.1117/1.JBO.19.1.010901
4. Gutiérrez-Gutiérrez J.A., Pardo A., Real E., et al. Custom scanning hyperspectral imaging system for biomedical applications: Modeling, benchmarking, and specifications // Sensors. 2019. V. 19. № 7. P. 1692. https://doi.org/10.3390/s19071692
5. Halicek M., Fabelo H., Ortega S., et al. In-vivo and ex-vivo tissue analysis through hyperspectral imaging techniques: revealing the invisible features of cancer // Cancers. 2019. V. 11. № 6. P. 756. https://doi.org/10.3390/cancers11060756
6. Pozhar V.E., Machikhin A.S. Spectral-polarization systems of three-dimensional technical vision based on acousto-optic filtering // Light and Eng. 2022. V. 30. № 5. P. 37–42. https://doi.org/10.33383/2022-088
7. Batshev V.I., Pozhar V.E., Kananykhin O.A. Quality assessments of stereoscopic images under acousto-optic diffraction in paratellurite crystal // J. Opt. Technol. 2023. V. 90. № 11. P. 00–00. http://doi.org/10.1364/JOT.90.000000
8. Chang C.I. Hyperspectral imaging: Techniques for spectral detection and classification. N.Y.: Springer New York, 2003. 370 p. https://doi.org/10.1007/978-1-4419-9170-6
9. Epikhin V.M., Kalinnikov Yu.K. Compensation of the diffraction angle spectral drift for non-collinear acousto-optical filter // Soviet Technical Physics. 1989. V. 34(2).
10. Machikhin A., Batshev V., Pozhar V. Aberration analysis of AOTF-based spectral imaging systems // JOSA A. 2017. № 34(7). P. 1109–1113. https://doi.org/10.1364/JOSAA.34.001109
11. Voloshinov V.B., Molchanov V.Y., Babkina T.M. Acousto-optic filter of nonpolarized electromagnetic radiation // Technical Physics. 2000. V. 45. P. 1186–1191. https://doi.org/10.1134/1.1318107