DOI: 10.17586/1023-5086-2024-91-07-80-88
УДК: 621.3.095.14, 681.7.068
Optical system for efficient tunable acousto-optic filtering of unpolarized supercontinuum radiation
Full text on elibrary.ru
Сударев А.А., Польщикова О.В., Зотов К.В. Оптическая система для эффективной перестраиваемой акустооптической фильтрации неполяризованного излучения суперконтинуума // Оптический журнал. 2024. Т. 91. № 7. С. 80–88. http://doi.org/10.17586/1023-5086-2024-91-07-80-88
Sudarev A.A., Polschikova O.V., Zotov K.V. Optical system for efficient tunable acousto-optic filtering of unpolarized supercontinuum radiation [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 7. P. 80–88. http://doi.org/10.17586/1023-5086-2024-91-07-80-88
Subject of study. Transmission and radiation power at the output of a tunable acousto-optical filtering system for unpolarized supercontinuum radiation. Aim of study. Development of a compact, highly efficient optical system for combining ±1 diffraction orders of a tunable acousto-optical filter for filtering unpolarized supercontinuum radiation. Method. A method is proposed for combining two diffraction orders of an acousto-optical filter based on a fiber-optic pump combiner and chromatic shift compensator wedges. The optical system has been modeled and experimentally tested. During the experiment, the influence of radiation instability and stray light on the measurement result was minimized. Main results. The efficiency of the proposed optical system for filtering unpolarized supercontinuum radiation in a wide spectral range has been studied. The optical power at the output of the system increased by 2.2 times compared to using one diffraction order with a linear polarizer. The transmittance of the optical system for combining the diffraction orders of the acousto-optical filter equals to 78%. Practical significance. The presented optical setup can be used as an illumination system in various applications that require tunable spectral filtering of radiation over a wide spectrum range with decreased losses in power and polarization. The optical system is compact and easy to adjust. It can be used in conjunction with the multi-frequency operating mode of an acousto-optical filter to transmit more complex spectral composition, which can be used, for example, in colorimetry.
acousto-optical tunable filter, unpolarized radiation, supercontinuum generator
Acknowledgements:this work was supported by the Ministry of Science and Higher Education of the Russian Federation (project № FFNS-2022-0010). The results were partly obtained on the base of the Center for Collective Use of Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences.
OCIS codes: 230.1040, 260.5430
References:1. Goutzoulis A.P. Design and fabrication of acousto-optic devices. N.Y.: CRC Press, 1994. 520 p.
2. Волошинов В.Б., Молчанов В.Я., Бабкина Т.М. Акустооптический фильтр неполяризованного электромагнитного излучения // ЖТФ. 2000. Т. 70. № 9. С. 93–98.
Voloshinov V.B., Molchanov V.Y., Babkina T.M. Acousto-optical filter of nonpolarized electromagnetic radiation // Technical Physics. 2000. V. 70. № 9. P. 1186–1191.
3. Электронный ресурс URL: https://yslphotonics.com/Home/Index/Product/details/id/22.html (YSL Photonics / AOTF) (дата обращения 06.12.2023).
Electronic resource URL: https://yslphotonics.com/Home/Index/Product/details/id/22.html (YSL Photonics / AOTF) (accessed 12/06/2023).
4. Электронный ресурс URL: https://yslphotonics.com/Home/Index/Product/details/id/31.html (YSL Photonics / AOTF-PRO) (дата обращения 06.12.2023).
Electronic resource URL: https://yslphotonics.com/Home/Index/Product/details/id/31.html (YSL Photonics / AOTF-PRO) (accessed 12/06/2023).
5. Hayden Smith Wm., Smith K.M. A polarimetric spectral imager using acousto-optic tunable filters // Exp. Astron. 1990. V. 1. № 5. P. 329–343. https://doi.org/10.1007/BF00454329
6. Cheng L.-J., Hamilton M., Mahoney C., et al. Field observations using an AOTF polarimetric imaging spectrometer // Summaries of the 4th Annual JPL Airborne Geoscience Workshop. V. 1: AVIRIS Workshop. 1993. P. 19–22.
7. Glenar D.A., Hillman J.J., Saif B., et al. Acousto-optic imaging spectropolarimetry for remote sensing // Appl. Opt. 1994. V. 33. № 31. P. 7412–7424. http://doi.org/10.1364/AO.33.007412
8. Rossi L., Marcq E., Montmessin F., et al. Preliminary study of Venus cloud layers with polarimetric data from SPICAV/VEx // Planetary and Space Sci. 2015. V. 113–114. P. 159–168. http://dx.doi.org/10.1016/j.pss.2014.11.011
9. Belyaev D.A., Yushkov K.B., Anikin S.P., et al. Compact acousto-optic imaging spectro-polarimeter for mineralogical investigations in the near infrared // Opt. Exp. 2017. V. 25. № 21. P. 25980. https://doi.org/10.1364/OE.25.025980
10. Jaiswal B., Singh S., Jain A., et al. AOTF based spectro-polarimeter for observing Earth as an Exoplanet. 2023. 23 с. [Электронный ресурс]. Режим доступа: https://arxiv.org/abs/2302.10712, свободный. Яз. англ. (дата обращения 20.10.2023). https://doi.org/10.48550/arXiv.2302.10712
Jaiswal B., Singh S., Jain A., et al. AOTF based spectro-polarimeter for observing Earth as an Exoplanet. 2023. 23 p. [Electronic resource]. Access mode: https://arxiv.org/abs/2302.10712, free. (accessed 10/20/2023). https://doi.org/10.48550/arXiv.2302.10712
11. Yuan Y., Hwang J.Y., Krishnamoorthy M., et al. High-throughput acousto-optic-tunable-filter-based time-resolved fluorescence spectrometer for optical biopsy // Opt. Lett. 2009. V. 34. № 7. P. 1132–1134. http://doi.org/10.1364/ol.34.001132
12. Anchutkin V.S., Belsky A.B., Voloshinov V.B., et al. Hyperspectral optical system with spatial separation of images possessing different polarization direction // Proc. SPIE. 2008. V. 7100. P. 71001D. https://doi.org/10.1117/12.797729
13. Ryu S.Y., You J.-W., Kwak Y., et al. Design of a prism to compensate the angular-shift error of the acousto-optic tunable filter // Opt. Exp. 2008. V. 16. № 22. P. 17138–17147. https://doi.org/10.1364/OE.16.017138
14. Vanhamel J., Dekemper E., Berkenbosch S., et al. Novel acousto-optical tunable filter (AOTF) based spectropolarimeter for the characterization of auroral emission // Instrumentation Sci. & Technol. 2021. V. 49. № 3. P. 245–257. https://doi.org/10.1080/10739149.2020.1814809
15. Zhang H., Zhao H., Guo Q., et al. Polarization-multiplexed high-throughput AOTF-based spectral imaging system // Materials. 2023. V. 16. № 12. P. 4243. http://doi.org/10.3390/ma16124243
16. Abdlaty R., Orepoulos J., Sinclair P., et al. High throughput AOTF hyperspectral imager for randomly polarized light // Photonics. 2018. V. 5. № 1. P. 3. https://doi.org/10.3390/photonics5010003
17. Романова Г.Э., Батшев В.И., Беляева А.С. Проектирование оптической осветительной системы для перестраиваемого источника на акустооптической фильтрации // Оптический журнал. 2021. Т. 88. № 2. С. 12–19. http://doi.org/10.17586/1023-5086-2021-88-02-12-19
Romanova G.E., Batshev V.I., and Beliaeva A.S. Design of an optical illumination system for a tunable source with acousto-optical filtering // J. Opt. Technol. 2021. V. 88. № 2. P. 66–71. https://doi.org/10.1364/JOT.88.000066
18. Балакший В.И., Манцевич С.Н. Акустооптическая коллинеарная дифракция произвольно поляризованного света // ЖТФ. 2011. Т. 81. № 11. С. 106–111.
Balakshy V.I., Mantsevich S.N. Acousto-optic collinear diffraction of arbitrarily polarized light // Tech. Phys. 2011. V. 56. № 11. P. 1646–1651. https://doi.org/10.1134/S1063784211110041
19. Zhu Z., Brown T.G. Polarization properties of supercontinuum spectra generated in birefringent photonic crystal fibers // JOSA. B. 2004. V. 21. № 2. P. 249–257. https://doi.org/10.1364/JOSAB.21.000249
20. Епихин В.М., Калинников Ю.К. Компенсация спектрального дрейфа угла дифракции в неколлинеарном акустооптическом фильтре // ЖТФ. 1989. Т. 59. № 2. С. 160–163.
Epikhin V.M., Kalinnikov Y.K. Compensation for spectral drift of the diffraction angle in a non-collinear acousto-optic filter [in Russian] // Technical Physics. 1989. V. 59. № 2. P. 160–163.
21. Батшев В.И., Мачихин А.С., Козлов А.Б. и др. Перестраиваемый акустооптический фильтр для спектральных диапазонов 450…900 нм и 900…1700 нм // Радиотехн. и электрон. 2020. Т. 65. № 7. С. 667–673. https://doi.org/10.31857/S0033849420070025
Batshev V.I., Machikhin A.S., Kozlov A.B., et al. Tunable acousto-optic filter for the 450–900 and 900–1700 nm spectral range // J. Commun. Technol. Electron. 2020. V. 65. № 7. P. 800–805. https://doi.org/10.1134/S1064226920070025
22. Batshev V., Machikhin A., Gorevoy A., et al. Spectral imaging experiments with various optical schemes based on the same AOTF // Materials. 2021. V. 14. № 11. P. 2984. https://doi.org/10.3390/ma14112984
23. Польщикова О.В., Горевой А.В., Мачихин А.С. Экспериментальное исследование влияния функции пропускания перестраиваемого акустооптического фильтра на характеристики интерференционной картины во внеосевой схеме цифровой голографии // Светотехника. 2022. № 5. С. 38–43.
Polschikova O.V., Gorevoy A.V., Machikhin A.S. Experimental study of the influence of the transmission function of acousto-optic tuneable filter on the interference pattern in off-axis digital holography // Light & Eng. 2022. V. 30. № 6. P. 43–50. https://doi.org/10.33383/2022-083
24. Польщикова О.В., Сударев А.А., Зотов К.В. и др. Перестраиваемая акустооптическая фильтрация неполяризованного излучения суперконтинуума // Акустооптические и радиолокационные методы измерений и обработки информации: Тр. XVI Междунар. научно-техн. конф. Суздаль, Россия. 09–12 октября 2023. ISBN 978-5-6051133-3-1. М.: НТЦ УП РАН, 2023. С. 81–86. https://doi.org/10.25210/armimp-2023-DHZLRW
Polschikova O.V., Sudarev A.A., Zotov K.V., et al. Tunable acousto-optic filtering of unpolarized supercontinuum radiation [in Russian] // Acousto-optic and radar methods for information measurements and processing: Proceedings of the XVI International scientific and technical conference. Suzdal, Russia. October 09–12, 2023. ISBN 978-5-6051133-3-1. Moscow: STC UI RAS, 2023. P. 81–86. https://doi.org/10.25210/armimp-2023-DHZLRW
25. Буров Н.В., Лин Дж., Ромашова В.Б. Высокомощные волоконные объединители // Фотоника. 2018. Т. 12. № 1(69). С. 16–28. https://doi.org/10.22184/1993-7296.2018.69.1.16.28
Burov N.V., Lin J., Romashova V.B. High-power fiber combiners // Photonics Russia. 2018. V. 12. № 1(69). P. 16–28. https://doi.org/10.22184/1993-7296.2018.69.1.16.28
26. Paschotta R. Fiber-optic pump combiners // RP Photonics Encyclopedia. [Электронный ресурс]. Режим доступа: https://doi.org/10.61835/tyd, свободный. Яз. англ. (дата обращения 15.12.2023).
Paschotta R. Fiber-optic pump combiners // RP Photonics Encyclopedia. [Electronic resource]. Access mode: https://doi.org/10.61835/tyd, free (accessed 12/15/2023).
27. Birks T.A., Knight J.C., Russell P.St.J. Endlessly single-mode photonic crystal fiber // Opt. Lett. 1997. V. 22. № 13. P. 961–963. https://doi.org/10.1364/OL.22.000961
28. Kupianskyi H., Horsley S.A.R., Phillips D.B. All-optically untangling light propagation through multimode fibers // Optica. 2024. V. 11. № 1. P. 101–112. https://doi.org/10.1364/OPTICA.502144
29. Электронный ресурс URL: https://www.leukos-laser.com/our-products/bebop/ (Leukos / Bebop — Leukos laser) (дата обращения 06.12.2023).
Electronic resource URL: https://www.leukos-laser.com/our-products/bebop/ (Leukos / Bebop — Leukos laser) (accessed 12/06/2023).
30. Электронный ресурс URL: https://www.nktphotonics.com/products/supercontinuum-white-light-lasers/superk-varia/ (NKT Photonics / SuperK VARIA) (дата обращения 06.12.2023).
Electronic resource URL: https://www.nktphotonics.com/products/supercontinuum-white-light-lasers/superk-varia/ (NKT Photonics / SuperK VARIA) (accessed 12/06/2023).
31. Беляева А.С., Романова Г.Э., Шарикова М.О. Оценка точности воспроизведения цвета перестраиваемым источником на базе акустооптического фильтра // Оптический журнал. 2023. Т. 90. № 11. С. 39–49. http://doi.org/10.17586/1023-5086-2023-90-11-39-49
Beliaeva A.S., Romanova G.E., Sharikova M.O. Estimation of color reproduction accuracy by a tunable source based on an acousto-optical tunable filter // J. Opt. Technol. 2023. V. 90. № 11. P. 00–00. http://doi.org/10.1364/JOT.90.000000
32. Machikhin A., Beliaeva A., Romanova G., et al. Color reproduction by multi-wavelength Bragg diffraction of white light // Materials. 2023. V. 16. № 12. P. 4382. https://doi.org/ 10.3390/ma16124382