DOI: 10.17586/1023-5086-2024-91-07-89-98
УДК: 520.35
Design of a compact long-wavelength infrared inverse telephoto lens
Full text on elibrary.ru
Батшев В.И., Крюков А.В. Расчет миниатюрного реверсивного телеобъектива тепловизионного диапазона // Оптический журнал. 2024. Т. 91. № 7. С. 89–98. http://doi.org/10.17586/1023-5086-2024-91-07-89-98
Batshev V.I., Kryukov A.V. Design of a compact long-wavelength infrared inverse telephoto lens [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 7. P. 89–98. http://doi.org/10.17586/1023-5086-2024-91-07-89-98
Subject of study. The design of an optical system of a compact long-wavelength infrared multispectral device lens. The aim of study is to design an optical system of a miniature thermal imaging lens of long-wavelength infrared range (8–14 µm) and its synthesis methodology. Method. The proposed solution is based on a combination of compositional and algebraic methods for optical systems synthesis. The lens layout corresponds to inverse telephoto lens and consists of a basic double-cemented lens component and a correction component of two meniscus lens that correct astigmatism and field curvature. Main results. The paper demonstrates the layout and synthesis methodology for a miniature thermal imaging inverse telephoto lens, its design and aberration synthesis. Practical significance. The proposed lens design can be used to create a multispectral thermal imaging system capable to collect spatial-spectral data, which can be useful for environmental monitoring and other applications. Small dimensions of the lens make it possible to use it as part of a compact device mounted on a mobile vehicle.
multispectral camera, thermal imaging lens synthesis, long-wavelength infrared range, long wave infrared range lens
Acknowledgements:the work was carried out within the framework of the State Assignment of the STC UI RAS (project FFNS-2022-0010).
OCIS codes: 110.4234, 110.0110, 110.6820, 120.4820
References:1. Johnson W.R., Wilson D.W., Fink W., et al. Snapshot hyperspectral imaging in ophthalmology // J. Biomed. Opt. 2007. V. 12. № 1. P. 014036. http://dx.doi.org/10.1117/1.2434950
2. Qin J., Chao K., Kim M.S., Lu R., Burks T.F. Hyperspectral and multispectral imaging for evaluating food safety and quality // J. Food Eng. 2013. V. 118. № 2. P. 157–171. http://dx.doi.org/10.1016/j.jfoodeng.2013.04.001
3. Laamrani A., Berg A.A., Voroney P., et al. Ensemble identification of spectral bands related to soil organic carbon levels over an agricultural field in Southern Ontario, Canada // Remote Sens. 2019. V. 11. № 11. P. 1298. http://dx.doi.org/10.3390/rs11111298
4. Schucknecht A., Reinermann S., Kiese R. Estimating aboveground biomass and nitrogen concentration in grasslands with multispectral and hyperspectral satellite data // Optica Sensing Congress 2023 (AIS, FTS, HISE, Sensors, ES). Munich, Germany. 30 July – 03 August, 2023. P. HM1C.2.
5. Hagen N.A., Kudenov M.W. Review of snapshot spectral imaging technologies // Opt. Eng. 2013. V. 52. № 9. P. 090901. https://doi.org/10.1117/1.OE.52.9.090901
6. Batshev V.I., Krioukov A.V., Novikov D.A. Options for constructing a multi-aperture lens for forming multiple spectral images [in Russian] // XVI Internat. Conf. "Acoustooptic and radar methods for information measurements and processing (ARMIMP-2023)". Suzdal, Russia. October 09–12 P. 239–243. https://doi.org/10.25210/armimp-2023-TNIJBO
7. Batshev V.I., Krioukov A.V., Machikhin A.S., et al. Multispectral video camera optical system // // J. Opt. Technol. 2023. V. 90. № 11. http://doi.org/10.1364/JOT.90.000000
8. Magunov A.N. Spectral pyrometry (review) // Instruments and Experimental Techniques. 2009. V. 52. № 4. P. 451–472.
9. Gålfalk M., Olofsson G., Crill P., et al. Making methane visible // Nat. Clim. Chang. 2016. V. 6. № 4. P. 426–430. https://doi.org/10.1038/nclimate2877
10. Slusarev G.G. Methods for calculating optical systems: Tutorial [in Russian]. Leningrad: ''Mashinostroenie'' Publ., 1969. 672 p.
11. Rusinov М.М. Optical systems composition: Tutorial [in Russian]. Leningrad: ''Mashinostroenie'' Publ., 1989. 383 p.
12. Rovenskaya T.S., Krioukov A.V. Method of calculation of optical schemes of wide-angle reversible telephoto lenses of asymmetric design [in Russian] // Vestnik BMSTU. 2000. V. 3. № 40. P. 109.
13. Batshev V.I., Krioukov A.V. Calculation of miniature optical systems of asymmetrical type // X Internat. Conf. "Acoustooptic and radar methods for information measurements and processing (ARMIMP-2017)". Suzdal, Russia. October 01–04, 2017. P. 195–197.
14. Zakaznov N.P., Kiryushin S.I., Kuzichev V.I. Theory of optical systems: Tutorial [in Russian]. St. Petersburg: "Lan’" Publ., 2002. 448 p.
15. Zapryagayeva L.A., Sveshnikova I.S. Calculation and design of optical systems: Tutorial [in Russian]. Moscow: "Logos" Publ., 2000. 584 p.
16. Sushkov A.L. On normalization of the initial parameters of the first and second auxiliary rays when calculating the Seidel aberration coefficients in the OPAL, OSLO, Zemax [in Russian] // Contenant. 2018. V. 17. № 3. P. 123–128.