ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2024-91-07-99-108

УДК: 535.4:535.6.08

Absorber characteristics study in acousto-optical cells

For Russian citation (Opticheskii Zhurnal):

Титов С.А., Пожар В.Э., Шарикова М.О., Давыдова Е.А. Исследование характеристик поглотителя в акустооптических ячейках // Оптический журнал. 2024. Т. 91. № 7. С. 99–108. http://doi.org/10.17586/1023-5086-2024-91-07-99-108

 

Titov S.A., Pozhar V.E., Sharikova M.O., Davydova E.A. Absorber characteristics study in acousto-optical cells [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 7. P. 99–108. http://doi.org/10.17586/1023-5086-2024-91-07-99-108

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Efficiency of an absorber of s-polarized transverse ultrasonic waves is considered. Aim of study. Determination of the structure of the acoustic field in acousto-optical devices. Development of a methodology for assessing the efficiency and quality of ultrasonic absorbers of acousto-optical devices, based on the analysis of echo-pulse ultrasonic signals. Method. Using surface scattering to determine the degree of absorption/reflection of ultrasound. Main results. Developed method for determining the quality of the applied absorbent coating. Practical significance. The method complements a set of previously developed methods for determining the structure of an acoustic Bragg diffraction grating, which determines the characteristics of acousto-optical devices.

Keywords:

acousto-optical devices, wave reflection, acoustic absorber

Acknowledgements:

the work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation within the framework of the State Task FFNS-2022-0010. The research used the equipment of the Center for Collective Use of the Scientific and Technological Center for Unique Instrumentation of the RAS.

OCIS codes: 050.7330, 230.1040

References:

1.  Balakshiy V.I., Parygin V.N., Chirkov L.N. Physical foundations of acousto-optics [in Russian].  Moscow: "Radio i sviaz" Publ., 1985. 280 p.

2.  Molchanov V.Ya., Kitaev Yu.I., Kolesnikov A.I., et al. Theory and practice of modern acousto-optics [in Russian]. Moscow: MISiS Press, 2015. 459 p.

3.  Goutzoulis A.P., Rape D.R. Design and fabrication of acousto-optic devices. Boca Raton: CRC Press, 2004. 520 p.

4.  Kotov V.M., Averin S.V., Karachevzeva M.V., et al. Acousto-optic spatial frequency filter operating in the intermediate region of acousto-optic interaction // J. Opt. Technol. 2022. V. 89. № 1. P. 38–43. http://dx.doi.org/10.1364/JOT.89.000038

5.  Leonov M.B., Terletskiy E.S., Seregin D.A. Substrate material and geometry features of measurement slits influence on infrared optical systems quality characteristics measurement // J. Opt. Technol. 2023. V. 90. № 7. P. 51–59. https://doi.org/10.17586/1023-5086-2023-90-07-51-59

6.  Voloshinov V., Polikarpova N. Acousto-optic investigation of propagation and reflection of acoustic waves in paratellurite crystal // Appl. Opt. 2009. V. 48. P. 55–66. https://doi:10.1364/AO.48.000C55

7.  Maak P., Takács T., Barocsi A., et al. Thermal behavior of acousto-optic devices: Effects of ultrasound absorption and transducer losses // Ultrasonics. 2011. V. 51. P. 441–451. https://doi:10.1016/j.ultras.2010.11.010

8.  Balakshy V., Voloshin A., Molchanov V. Anisotropic light diffraction in crystals with a large acoustic-energy walk-off // Opt. and Spectrosc. 2014. V. 117. P. 801–806. https://doi:10.1134/S0030400X14110046

9.  Voloshinov V., Polikarpova N., Ivanova P., et al. Acousto-optic control of internal acoustic reflection in tellurium dioxide crystal in case of strong elastic energy walkoff [Invited] // Appl. Opt. 2018. V. 57. № 10. P. 19–25. https://doi.org/10.1364/AO.57.000C19

10. Shvets V.A., Marin D.V., Kuznetsova L.S., et al. Surface morphology analysis of CdTe buffer layers using ellipsometry and interference profilometry to create a technique for monitoring the growth of buffer layers // J. Opt. Technol. 2024. V. 91. № 2. P. 00–00. http://dx.doi.org/10.1364/JOT.91.000000

11.  Kudo N. Optical methods for visualization of ultrasound fields // Japan. J. Appl. Phys. 2015. V. 54. P. 07HA01-1–07HA01-6. https://doi.org/10.7567/JJAP.54.07HA01

12.  Ishikawa K., Yatabe K., Oikawa Y. Physical-model-based reconstruction of axisymmetric three-dimensional sound field from optical interferometric measurement // Meas. Sci. Technol. 2021. V. 32. № 4. P. 045202. https://doi.org/10.1088/1361-6501/abce73

13. Rajput S.K., Matoba O., Takase Y., et al. Multi-modal sound field imaging using digital holography [Invited] // Appl. Opt. 2021. V. 60. № 10. P. B49–B58. https://doi.org/10.1364/AO.415162

14. Ortiz P.F.U., Perchoux J., Arriaga A.L., et al. Visualization of an acoustic stationary wave by optical feedback interferometry // Opt. Eng. 2018. V. 57. № 5. Р. 051502. https://doi.org/10.1117/1.OE.57.5.051502

15. Wu J., Xu Z., Li K., et al. Analysis of acoustic near field characteristics in acousto-optic modulator // IEEE Photonics Technol. Lett. 2021. V. 33. № 4. P. 201–204. https://doi:10.1109/lpt.2021.3051648

16.  Verburg S.A., Fernandez-Grande E. Acousto-optical volumetric sensing of acoustic fields // Phys. Rev. Appl. 2021. V. 16. P. 044033. https://doi.org/10.1103/PhysRevApplied.16.044033

17.  Hill C.R., Bamber J.C., ter Haar, G.R. Physical principles of medical ultrasonics. John Wiley & Sons, 2004. 528 p.

18. Harris G.R. Hydrophone measurements in diagnostic ultrasound fields // IEEE Trans. Ultrason. Ferroelect. Freq. Contr. 1988. V. 35. № 2. P. 87–101. https://doi: 10.1109/58.4157

19. Titov S.A., Pozhar V.E., Lomonov V.A. Experimental evaluation of the structure of dynamic diffraction gratings in acousto-optic devices // Light & Eng. 2022. V. 30. № 6. Р. 55–59. https://doi.org/10.33383/2022-079

20. Titov S.A., Machikhin A.S., Pozhar V.E., et al. Study of the ultrasonic field in an acousto-optic crystal using acoustic methods // Commun. Technol. Electron. 2022. V. 67. № 12. Р. 1443–1449. https://doi: 10.31857/S0033849422120221

21. Titov S.A., Machikhin A.S., Pozhar V.E. Evaluation of acoustic waves in acousto-optical devices by ultrasonic imaging // Materials. 2022. V. 15. № 5. Р. 1792. https://doi.org/10.3390/ma15051792