DOI: 10.17586/1023-5086-2024-91-08-35-49
УДК: 531.383, 53.096
A method to estimate the thermal sensitivity coefficient of a fiber-optic gyroscope loop
Full text on elibrary.ru
Погудин Г.К., Алейник А.С., Никитенко А.Н., Арцер И.Р., Стригалёв В.Е., Ошлаков В.С., Волковский С.А., Смирнов Д.С., Кубланова И.Л. Метод определения коэффициента температурной чувствительности контура волоконно-оптического гироскопа // Оптический журнал. 2024. Т. 91. № 8. С. 35–49. http://doi.org/10.17586/1023-5086-2024-91-08-35-49
Pogudin G.K., Aleinik A.S., Nikitenko A.N., Artser I.R., Strigalev V.E., Oshlakov V.S., Volkovskii S.A., Smirnov D.S., Kublanova I.L. A method to estimate the thermal sensitivity coefficient of a fiber-optic gyroscope loop [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 8. P. 35–49. http://doi.org/10.17586/1023-5086-2024-91-08-35-49
Subject of study. The thermal sensitivity coefficient of a fiber-optic gyroscope loop. Aim of study. The aim is to establish and verify a method for determining the mechanical and optical components of the temperature coefficient of the scale factor in a fiber-optic gyroscope. Method. An algorithm for determining the temperature coefficient of the scale factor in a fiber-optic gyroscope experimentally and a computational method for calculating the temperature coefficient of the fiber loop are used. Main results. A method for determining the thermal sensitivity coefficient of the fiber loop in a fiber-optic gyroscope has been developed. The dependency between the temperature coefficient of the scale factor in a fiber-optic gyroscope, the temperature coefficient of the central wavelength spectrum output radiation of an erbium-doped superluminescent fiber source, and the temperature coefficient of the fiber loop in a fiber-optic gyroscope has been experimentally confirmed. Practical significance. The findings of this research can be utilized to develop a testing setup and procedure for assessing the temperature coefficients of fiber loops for further selection or categorization during fiber-optic gyroscopes manufacturing, switching emission source parameters to match specific fiber loop characteristics for temperature coefficient compensation, and consideration of the temperature coefficient value of the fiber loop for its structural minimization as a result of the development and prototyping of novel fiber loop designs.
fiber-optic gyroscope, fiber-optic gyroscope loop, thermal sensitivity coefficient, fiberoptic gyroscope scale factor, erbium-doped superluminescent fiber source
Acknowledgements:the authors express their gratitude to Concern CSRI Elektropribor, JSC for providing access to equipment for carrying out measurements. The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (Project № FSER-2024-0006).
OCIS codes: 120.0120, 120.5790, 060.2800
References:1. Nayak J. Fiber-optic gyroscopes: From design to production // Applied Optics. 2011. V. 50. № 25. P. 152–161. https://doi.org/10.1364/AO.50.00E152
2. Lefèvre H.C. The fiber-optic gyroscope: Achievement and perspective // Gyroscopy and Navigation. 2012. V. 3. P. 223–226. https://doi.org/10.1134/S2075108712040062
3. Chamoun J.N., Digonnet M.J.F. Noise and bias error due to polarization coupling in a fiber optic gyroscope // Journal of Lightwave Technology. 2015. V. 33. № 13. P. 2839–2847. https://doi.org/10.1109/JLT.2015.2416155
4. Sanders G.A., Strandjord L.K., Wu J. et al. Development of compact resonator fiber optic gyroscopes // 4th IEEE International Symposium on Inertial Sensors and Systems (INERTIAL). Kauai, Hawai, USA. March 27–30. 2017. P. 168–170. https://doi.org/10.1109/ISISS.2017.7935657
5. Dranitsyna E.V., Egorov D.A., Untilov A.A. Current state of development of fiber-optic gyroscopes and prospects for their advancement [in Russian] // Gyroscopy and Navigation. 2023. V. 31. № 4. P. 2–21. https://doi.org/10.23919/ICINS51816.2023.10168323
6. Lefèvre H.C. The fiber-optic gyroscope. Norwood, USA: Artech House, 2022. 550 p.
7. Huang Y.-W., Peng T.-S., Wang L.A. et al. Performance comparison of fiber-optic gyroscopes using single pass backward and double pass backward superfluorescent fiber sources // 20th International Conference on Optical Fibre Sensors. Edinburgh, United Kingdom. October 5–9. 2009. V. 7503. P. 651–654. https://doi.org/10.1117/12.835365
8. Guillaumond D., Meunier J.-P. Comparison of two flattening techniques on a double-pass erbium-doped superfluorescent fiber source for fiber-optic gyroscope // IEEE Journal of Selected Topics in Quantum Electronics. 2001. V. 7. № 1. P. 17–21. https://doi.org/10.1109/2944.924004
9. Wan H., Zhang D., Sun X. Stabilization of a superfluorescent fiber source with high performance erbium doped fibers // Optical Fiber Technology. 2013. V. 19. № 3. P. 264–268. https://doi.org/10.1016/j.yofte. 2013.02.006
10. Chang J., Manning T. Experimental optimization of an erbium-doped super-fluorescent fiber source for fiber optic gyroscopes // Journal of Semiconductors. 2011. V. 32. № 10. P. 104007. https://doi.org/10.1088/1674-4926/32/10/104007
11. Patrick H.J., Kersey A.D., Bums W.K. et al. An erbium-doped superfluorescent fiber source with long period fiber grating wavelength stabilization // 12th International Conference on Optical Fiber Sensors. Williamsburg, USA. 1997. V. 16. P. 138–141. https://doi.org/10.1364/OFS.1997.OWB6
12. Li Y., Jiang M., Zhang C.X. et al. High stability Erdoped superfluorescent fiber source incorporating an Er-doped fiber filter and a faraday rotator mirror // IEEE Photonics Technology Letters. 2013. V. 25. № 8. P. 731–733. https://doi.org/10.1109/LPT.2013.2250948
13. Wang A., Ou P., Feng L.S. et al. High-stability Erdoped superfluorescent fiber source incorporating photonic bandgap fiber // IEEE Photonics Technology Letters. 2009. V. 21. № 24. P. 1843–1845. https://doi. org/10.1109/LPT.2009.2034621
14. Wilkinson M., Bebbington A., Cassidy S.A. et al. D-fibre filter for erbium gain spectrum flattening // Electronics Letters. 1992. V. 2. № 28. P. 131–132. https://doi.org/10.1049/el:19920081
15. Wang A. High stability Er-doped superfluorescent fiber source improved by incorporating bandpass filter // IEEE Photonics Technology Letters. 2011. V. 23. № 4. P. 227–229. https://doi.org/10.1109/LPT.2010.2098436
16. Saleh B., Teich M.C. Fundamentals of Photonics. Hoboken, USA: John Wiley & Sons, 2007. 1201 p.
17. Moeller R.P., Burns W.K., Frigo N.J. Open-loop output and scale factor stability in a fiber-optic gyroscope // Journal of Lightwave Technology. 1989. V. 7. № 2. P. 262–269. https://doi.org/10.1109/50.17765
18. Chen S., Cheng J., Gao W. A phase modulation method for improving the scale factor stability of fiber-optic gyroscope // IEEE International Conference on Mechatronics and Automation. Takamatsu, Japan. August 05–08. 2008. P. 37–42. https://doi.org/10.1109/ ICMA.2008.4798722
19. Shen C., Chen X. Analysis and modeling for fiber-optic gyroscope scale factor based on environment temperature // Applied Optics. 2012. V. 51. № 14. P. 2541–2547. https://doi.org/10.1364/AO.51.002541
20. Zhang E., Yang L., Xue B. et al. Compensation for the temperature dependency of fiber optic gyroscope scale factor via Er-doped superfluorescent fiber source // Optical Engineering. 2018. V. 57. № 8. P. 085106. https://doi.org/10.1117/1.OE.57.8. 085106
21. Zhao S., Zhou Y., Shu X. Study on nonlinear error calibration of fiber optical gyroscope scale factor based on LSTM // Journal of the International Measurement Confederation. 2022. V. 190. P. 110783. https://doi.org/10.1016/j.measurement.2022.110783