DOI: 10.17586/1023-5086-2024-91-08-75-88
УДК: 535.361.22:577.3
Ex vivo determination of perfusion-kinetic parameters of ovaries with granulosa cell carcinoma using reflectance spectroscopy
Full text on elibrary.ru
Селифонов А.А., Рыхлов А.С., Селифонова Е.И., Тучин В.В. Еx vivo определение перфузионно-кинетических параметров яичников при гранулёзоклеточной опухоли методом отражательной спектроскопии // Оптический журнал. 2024. Т. 91. № 8. С. 75–88. http://doi.org/10.17586/1023-5086-2024-91-08-75-88
Selifonov A.A., Rykhlov A.S., Selifonova E.I., Tuchin V.V. Ex vivo determination of perfusion-kinetic parameters of ovaries with granulosa cell carcinoma using reflectance spectroscopy [in Russian] // Opticheskii Zhurnal. 2024. V. 91. № 8. P. 75–88. http://doi.org/10.17586/1023-5086-2024-91-08-75-88
Subject of study. This study examined the optical properties of healthy and cancerous feline ovarian tissues under the influence of 99.5% glycerol, one of the effective hyperosmotic agents. Aim of study. Determination of perfusion-kinetic parameters of healthy and cancerous ovarian tissues under the influence of 99.5% glycerol. Method. The optical properties of the studied samples were studied by diffuse optical spectroscopy of transmittance and reflectance in a wide spectral range from ultraviolet to near infrared region. Main results. The diffuse reflectance and total transmittance spectra of the studied samples were measured. Using the free diffusion model and Fick’s molecular diffusion equation, and the modified Bouguer–Beer–Lambert law for attenuation of radiation, the diffusion coefficient of interstitial water flux induced by the action of glycerol in ovarian tissue was calculated. The tissue diffusion coefficient of water for healthy ovaries was found as D= (2.2 ± 0.5)х10–6 cm2/s and for ovaries with granulosa cell cancer D = (2.6 ± 0.6)х10–6 cm2/s. Using the obtained diffusion coefficients, we determined the time of complete dehydration of the studied samples under the influence of glycerol. The time for complete dehydration of sections of healthy ovaries in the luteal phase was 19.4 minutes, and for a granulosa cell tumor — 16.6 minutes. Practical significance. The data obtained can be used to assess the overall dehydration of the ovaries when using concentrated glycerol, as well as to develop protocols for drug delivery and organ cryopreservation. The demonstrated effect of optical clearing can be used in therapeutic and diagnostic clinical applications to study molecular structures deep in tissues. Optical clearing technology using hyperosmotic agents, in particular glycerol, leading to improved tissue transparency in the ultraviolet range, can be used in ultraviolet biomedical spectroscopy and for phototherapy.
ovaries, ovarian cancer, granulosa cell carcinoma, glycerol, total transmittance spectra, diffuse reflectance spectra, diffusion coefficient, optical clearing efficiency
Acknowledgements:work was supported by the Russian Science Foundation Grant № 22-75-00021.
OCIS codes: 300.0300
References:1. D’Oria O., D’Auge T.G., Baiocco E., Vincenzoni C, Mancini Е., Bruno V., Chiofalo B., Mancari R., Vizza R., Cutillo G., Giannini A. The role of preoperative frailty assessment in patients affected by gynecological cancer: a narrative review // Italian J. Gynæcology Obstet. 2022. V. 34. № 2. P. 76–83. https://doi.org/jog.2022.34
2. Beachler D.C., Lamy F.-X., Russo L., Taylor D.H., Dinh J., Yin R., Jamal-Allial A., Dychter S., Lanes S., Verpillat P. A real-world study on characteristics, treatments and outcomes in US patients with advanced stage ovarian cancer // Journal of Ovarian Resear. 2020. V. 13. № 1. P. 1–13. https://doi.org/10.1186/s13048-020-00691-y
3. Al Harbi R., McNeish I.A., El-Bahrawy M. Ovarian sex cord-stromal tumors: an update on clinical features, molecular changes, and management // International Journal of Gynecologic Cancer. 2021. V. 31. № 2. P. 161–168. https://doi.org/10.1136/ijgc-2020-002018
4. Huvila J., Gilks C.B. Granulosa cell tumor-juvenile [Electronic resource]. Access mode: https://www.pathologyoutlines.com/topic/ovarytumorgctjuv.html (accessed 13/11/2023)
5. Bian X., Xia J., Wang K., Wang Q., Yang L., Wu W., Li L. The effects of a prior malignancy on the survival of patients with ovarian cancer: a population-based study // Journal Cancer. 2020. V. 11. № 21. P. 6178–6187. https://doi.org/10.7150/jca.46584
6. Cabasag C.J., Butler .J, Arnold M., Rutherford .M, Bardot A., Ferlay J., Morgan E., Mоller B., Gavin A., Norell C.H., Harrison S., Saint-Jacques N., Eden M., Rous B., Nordin A., Hanna L., Kwon J., Cohen P.A., Altman A.D., Shack L., Kozie S., Engholm G., De P., Sykes P., Porter G., Ferguson S., Walsh P., Trevithick R., Tervonen H., O'Connell D., Bray F., Soerjomataram I. Exploring variations in ovarian cancer survival by age and stage (ICBP SurvMark-2): a population-based study // Gynecologic Oncology. 2020. V. 157. № 1. P. 234–244. https://doi.org/10.1016/j.ygyno.2019.12.047
7. Tuchin V.V. Handbook of optical biomedical diagnostics. Second Edition. V.1: Light-Tissue Interaction. WA, Bellingham: SPIE Press, 2016. 864 р.
8. Frolov O.O., Timchenko P.E., Timchenko E.V., Volova L.T., Magsumova O.A., Postnikov M.A. Use of Raman spectroscopy for assessment of changes in enamel and dentin composition after in-office whitening // Journal of Optical Technology. 2023. V. 90(6). P. 349–352. https://doi.org/10.1364/JOT.90.000349
9. Timchenko E.V., Timchenko P.E., Pisareva E.V., Vlasov M.Yu., Volova L.T., Fedotov A.A., Fedorova Ya.V., Tyumchenkova A.S., Romanova D.A., Daniel M.A., Subatovich A.N. Optical analysis of bone tissue by Raman spectroscopy in experimental osteoporosis and its correction using allogeneic hydroxyapatite // Journal of Optical Technology. 2020. V. 87. № 3. P. 161–167. https://doi.org/10.1364/JOT.87.000161
10. Selifonov A.A., Tuchin V.V. Optical properties of human dentin when it is immersed in glucose in vitro and the kinetics of this process // Journal of Optical Technology. 2020. V. 87. № 3. P. 168–174. https://doi.org/10.1364/JOT.87.000168
11. Petritskaya E.N., Kulikov D.A., Rogatkin D.A., Guseva I.A., Kulikova P.A. Use of fluorescence spectroscopy for diagnosis of hypoxia and inflammatory processes in tissue // Journal of Optical Technology. 2015. V. 82. № 12. P. 810–814. https://doi.org/10.1364/JOT.82.000810
12. Kang U., Papayan G.V., Obukhova N.A., Bae S.J., Lee D.S., Jung M.W., Berezin V.B., Motyko A.A., Plokhikh D.P., Slobodenyuk S.A. System for fluorescence diagnosis and photodynamic therapy of cervical disease // Journal of Optical Technology. 2015. V. 82. № 12. P. 815–823. https://doi.org/10.1364/JOT.82.000815
13. Yang Y., Li X., Wang T., Kumavor P.D., Aguirre A., Shung K.K., Zhou Q., Sanders M., Brewer M., Zhu Q.
Integrated optical coherence tomography, ultrasound and photoacoustic imaging for ovarian tissue characterization // Biomed Opt Express. 2011. V. 9. № 2. Р. 2551–61. https://doi.org/ 10.1364/BOE.2.002551
14. Schwartz D., Sawyer T.W., Thurston N. Ovarian cancer detection using optical coherence tomography and convolutional neural networks // Neural Comput & Applic. 2022. V. 34. Р. 8977–8987. https://doi.org/10.1007/
s00521-022-06920-3
15. Tuchin V.V. Tissue optics: Light scattering methods and instruments for medical diagnostics. 3rd ed. Bellingham. WA, USA: SPIE Press, 2015. 934 р.
16. Tuchin V.V., Zhu D., Genina E.A. (eds.). Handbook of tissue optical clearing: New prospects in optical imaging. Boca Raton: CRC Press, 2022. 688 p.
17. Carneiro I., Carvalho S., Henrique R., Selifonov A., Oliveira L., Tuchin V.V. Enhanced ultraviolet spectroscopy by optical clearing for biomedical Applications // IEEE Journal of Selected Topics in Quantum Electronics.
18. Genina E.A., Bashkatov A.N., Tuchin V.V. Tissue optical immersion clearing // Expert Rev Med Devices. 2010.
V. 7. № 6. Р. 825–842. https://doi.org/10.1586/erd.10.50
19. Kotyk A., Janacek K. Cell membrane transport: An interdisciplinary approach. New York: Plenum Press, 1977. 348 p.
20. Carvalho S., Gueiral N., Nogueira E., Henrique R., Oliveira L., Tuchin V.V. Glucose diffusion in colorectal mucosa — a comparative study between normal and cancer tissues // Journal of Biomedical Optics. 2017. V. 22. № 9. P. 091506. https://doi.org/10.1117/1.JBO.22.9.091506
21. Selifonov A.A., Rykhlov A.S., Tuchin V.V. The glycerol-induced perfusion-kinetics of the cat ovaries in the follicular and luteal phases of the cycle // Diagnostics. 2023. V. 13. № 3. P. 490–499. https://doi.org/10.3390/ diagnostics13030490.
22. Selifonov A.A., Rykhlov A.S., Tuchin V.V. Ex vivo study of the kinetics of ovarian tissue optical properties under the influence of 40%-glucose // Izvestiya of Saratov University. Physics. 2023. V. 23. № 2. P. 120–127. https://doi.org/10.18500/1817-3020-2023-23-2-120-127