DOI: 10.17586/1023-5086-2025-92-10-16-25
УДК: 535.417.22, 544.25
Spectral shift of microresonator modes with a photo-controlled cholesteric defect layer
Full text on elibrary.ru
Крахалев М.Н., Абдуллаев А.С., Зуев А.С., Гуняков В.А., Тимофеев И.В., Зырянов В.Я. Спектральный сдвиг мод микрорезонатора с фотоуправляемым холестерическим дефектным слоем // Оптический журнал. 2025. Т. 92. № 10. С. 16–25. http://doi.org/10.17586/1023-5086-2025-92-10-16-25
Krakhalev M.N., Abdullaev A.S., Zuev A.S., Gunyakov V.A., Timofeev I.V., Zyryanov V.Ya. Spectral shift of microresonator modes with a photo-controlled cholesteric defect layer [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 10. P. 16–25. http://doi.org/10.17586/1023-5086-2025-92-10-16-25
Subject of research. Fabry–Perot microresonators with a photosensitive cholesteric as a defect layer are investigated. The pitch of the cholesteric helix is changed by ultraviolet or blue light. Planar-tangential boundary conditions are set for the cholesteric, thus enabling the continuous variation in the twist angle of the structure. Purpose of the work is to establish the patterns of the change in polarization and spectral characteristics of microresonator modes on the twist angle of the planar cholesteric structure. Methods. The microresonators are investigated experimentally and by numerical simulations using the Berreman matrix method generalized for the case of anisotropic medium. Studies are performed for the microresonator cavity thicknesses of 3.63 µm and 7.68 µm. Main results. It is shown that the re- and ro-modes of the microresonator are controlled with the same efficiency by changing the twist angle of the cholesteric. As the twist angle is increased, the re-modes shift to a red range of the spectrum, while the ro-modes exhibit a blue spectral shift. The magnitude of the spectral shift of modes is limited by the phenomenon of anticrossing of modes of neighboring series appearing in the Gooch–Tarry maximum, where the mode type changes from re- to ro- and vice versa. The position of the Gooch–Tarry maximum exhibits a red spectral shift at an increasing of cholesteric twist angle, the rate of the spectral shift rises with reducing the liquid crystal layer thickness and increasing light wavelength. Practical significance. The obtained results can be promising for the development of photo-controlled photonic systems with improved optical characteristics.
Fabry–Perot cavity, cholesteric, photocontrol, twisting of orientational structure, light polarization
Acknowledgements:OCIS codes: 230.5750, 160.3710, 160.5335
References:- Optical microcavities / Ed. Vahala K. Singapore: World Scientific, 2004. 502 p. https://doi.org/10.1142/5485
- Chen J., Song G., Cong S., Zhao Z. Resonant-cavity-enhanced electrochromic materials and devices // Adv. Mater. 2023. V. 35. Is. 47. P. 2300179. https://doi.org/10.1002/adma.202300179
- Patel J.S., Saifi M.A., Berreman D.W., Chinlon Lin, Andreadakis N., Lee S.D. Electrically tunable optical filter for infrared wavelength using liquid crystals in a Fabry–Perot étalon // Appl. Phys. Lett. 1990. V. 57. № 17. P. 1718–1720. https://doi.org/10.1063/1.104045
- Abuleil M., Abdulhalim I. Narrowband multispectral liquid crystal tunable filter // Optics Letters. 2016. V. 41. № 9. P. 1957–1960. https://doi.org/10.1364/OL.41.001957
- Ozaki R., Matsuhisa Y., Ozaki M., Yoshino K. Electrically tunable lasing based on defect mode in one-dimensional photonic crystal with conducting polymer and liquid crystal defect layer // Appl. Phys. Lett. 2004. V. 84. № 11. P. 1844–1846. https://doi.org/10.1063/1.1686891
- Blinov L. Structure and properties of liquid crystals // Topics in Applied Physics. Netherlands: Springer, 2010. 439 p.
- Yang D.K., Wu S.T. Fundamentals of liquid crystal devices. 2nd ed. Chichester: John Wiley & Sons, 2014. 592 p.
- Mansha S., Moitra P., Xu X., Mass T.W.W., Maruthiyodan V., Liang X., Li S.-Q., Paniagua-Domingues R., Kuznetsov A.I. High resolution multispectral spatial light modulators based on tunable Fabry–Perot nanocavities // Light: Sci. Appl. 2022. V. 11. P. 141. https://doi.org/10.1038/s41377-022-00832-6
- Ozaki R., Ozaki M., Yoshino K. Electrically rotatable polarizer using one-dimensional photonic crystal with a nematic liquid crystal defect layer // Crystals. 2015. V. 5. Is. 3. P. 394–404. https://doi.org/10.3390/cryst5030394
- Krasnov A.I., Pankin P.S., Buzin D.S., Romanenko G.A., Sutormin V.S., Zelenov F.V., Masyugin A.N., Volochaev M.N., Vetrov S.Ya., Timofeev I.V. Voltage-tunable Q factor in a photonic crystal microcavity // Opt. Lett. 2023. V. 48. Is. 7. P. 1666–1669. https://doi.org/10.1364/OL.479431
- Huang Y., Wu T.X., Wu S.-T. Simulations of liquid-crystal Fabry–Perot etalons by an improved 4×4 matrix method // J. Appl. Phys. 2003. V. 93. Is. 5. P. 2490–2495. https://doi.org/10.1063/1.1542652
- Zyryanov V.Ya., Myslivets S.A., Gunyakov V.A., Parshin A.M., Arkhipkin V.G., Shabanov V.F., Wei Lee. Magnetic-field tunable defect modes in a photonic-crystal/liquid crystal cell // Optics Express. 2010. V. 18. № 2. P. 1283–1288. https://doi.org/10.1364/OE.18.001283
- Jisha C.P., Alberucci A., Beeckman J., Nolte S. Self-trapping of light using the Pancharatnam–Berry phase // Phys. Rev. X. 2019. V. 9. Is. 2. P. 021051. https://doi.org/10.1103/PhysRevX.9.021051
- Timofeev I.V., Gunyakov V.A., Sutormin V.S., Myslivets S.A., Arkhipkin V.G., Vetrov S.Y., Lee W., Zyryanov V.Y. Geometric phase and o-mode blueshift in a chiral anisotropic medium inside a Fabry–Pérot cavity // Phys. Rev. E. 2015. V. 92. Is. 5. P. 052504. https://doi.org/10.1103/PhysRevE.92.052504
- Zhuang Z., Patel J.S. Behavior of cholesteric liquid crystals in a Fabry–Pérot cavity // Opt. Lett. 1999. V. 24. Is. 23. P. 1759–1761. https://doi.org/10.1364/OL.24.001759
- Li Y., Wang M., White T.J., Bunning T.J., Li Q. Azoarenes with opposite chiral configurations: Light-driven reversible handedness inversion in self-organized helical superstructures // Angew. Chem. Int. Ed. 2013. V. 52. Is. 34. P. 8925–8929. http://doi.org/10.1002/anie.201303786
- Chen P., Ma L.-L., Hu W., Shen Z.-X., Bisoyi H.K., Wu S.-B., Ge S.-J., Li Q., Lu Y.-Q. Chirality invertible superstructure mediated active planar optics // Nat. Commun. 2019. V. 10. Is. 1. P. 2518. https://doi.org/10.1038/s41467-019-10538-w
- Abdullaev A.S., Kostikov D.A., Krakhalev M.N., Zyryanov V.Y. Complete light polarization control using a chiral-nematic cell with tangential-conical boundary conditions // Opt. Mat. 2023. V. 146. P. 114521. https://doi.org/10.1016/j.optmat.2023.114521
- Hao L., Liang F., Jing H., Xiang Y., Salamon P., Eber N., Buka A., Kohout M., Chen J., Pei Y. Control of light polarization by optically induced-chirality in photosensitive nematic fluids // Opt. Express. 2024. V. 32. Is. 8. P. 13965–13977. https://doi.org/10.1364/OE.522820
- Ryabchun A., Bobrovsky A., Stumpe J., Shibaev V. Rotatable diffraction gratings based on cholesteric liquid crystals with phototunable helix pitch // Adv. Opt. Mat. 2015. V. 3. Is. 9. P. 1273–1279. https://doi.org/10.1002/adom.201500159
- Chepeleva D.S., Yakovleva A.S., Murauski A.A., Kukhta I.N., Muravsky A.A. Phototunable selective reflection of cholesteric liquid crystals // Doklady BGUIR. 2019. V. 7. Is. 125. P. 28–31. http://doi.org/10.35596/1729-7648-2019-125-7-28-31
- Gunyakov V.A., Timofeev I.V., Krakhalev M.N., Lee W., Zyryanov V.Y. Electric field-controlled transformation of the eigenmodes in a twisted-nematic Fabry–Pérot cavity // Scientific Reports. 2018. V. 8. Is. 1. P. 16869. https://doi.org/10.1038/s41598-018-35095-y
- Berreman D.W. Optics in stratified and anisotropic media: 4×4-matrix formulation // J. Opt. Soc. Am. 1972. V. 62. P. 502–510. https://doi.org/10.1364/JOSA.62.000502
- Malitson I.H. Interspecimen comparison of the refractive index of fused silica // J. Opt. Soc. Am. 1965. V. 55. Is. 10. P. 1205–1209. https://doi.org/10.1364/JOSA.55.001205
-
Абдуллаев А.С., Крахалев М.Н., Зырянов В.Я. Фотоиндуцированная трансформация ориентационной структуры хирального нематика с планарно-коническим сцеплением // Жидк. крист. и их практич. использ. 2024. Т. 24. № 1. С. 90–95. https://doi.org/10.18083/LCAppl.2024.1.90
Abdullaev A.S., Krakhalev M.N., Zyryanov V.Y. Photoinduced transformation of the orientational structure of a chiral nematic under planar-conical anchoring // Liq. Cryst. and their Appl. 2024. V. 24. Is. 1. P. 90–95 (in Russ.). https://doi.org/10.18083/LCAppl.2024.1.90
- Patel S., Silberberg Y. Anticrossing of polarization modes in liquid-crystal étalons // Opt. Lett. 1991. V. 16. Is. 13. P. 1049–1051. https://doi.org/10.1364/OL.16.001049
- Ohtera Y., Yoda H., Kawakami S. Analysis of twisted nematic liquid crystal Fabry–Pérot interferometer (TN-FPI) filter based on the coupled mode theory // Optical and Quantum Electronics. 2000. V. 32. P. 147–167. https://doi.org/10.1023/A:1007075429333
ru