DOI: 10.17586/1023-5086-2025-92-10-41-51
УДК: 681.7.013.82, 535.317.64
Wide-angle lens distortion influence on modulation transfer function measurement error
Full text on elibrary.ru
Леонов М.Б., Терлецкий Е.С., Серегин Д.А. Острун А.Б. Влияние дисторсии широкоугольных объективов на погрешность измерения функции передачи модуляции // Оптический журнал. 2025. Т. 92. № 10. С. 41–51. http://doi.org/10.17586/1023-5086-2025-92-10-41-51
Leonov M.B., Terletsky E.S., Seregin D.A., Ostrun A.B. Wide-angle lens distortion influence on modulation transfer function measurement error [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 10. P. 41–51. http://doi.org/10.17586/1023-5086-2025-92-10-41-51
Subject of study. Wide-angle lens distortion influence on modulation transfer function measurement results and measurement error. Aim of study. Determination of correlation between distortion, field of view and modulation transfer function for wide-angle lens off-axis measurements error reduction. Method. Correction factor calculation with consideration to distortion and field of view. Wide-angle lens measurements on test bench with collimator. Main results. Collimator and object slit image size formulas for wide-angle lens measurements are presented with consideration to distortion and field of view. Slits’ image size is using to calculate modulation transfer function correction factor and affects measurement results. Modulation transfer function systematic error component can assume a value up to 10% due distortion. If tolerance for off-axis slit image measurement error is ±0,001 mm, then modulation transfer function measurement error will be 0,01 rel.un. Practical significance. Obtained formulas considers distortion and field of view for wide-angle lens modulation transfer function measurements. Proposed calculation method can be used to determine the field of view where distortion can be ignored, as well as estimate modulation transfer function systematic error component for off-axis measurements.
optic system, lens, angular field of view, distortion, modulation transfer function, measurement error, correction factor
Acknowledgements:authors thanks Alexander A. Starkov (Vavilov State Optical Institute) for consultation the research.
OCIS codes: 120.4630,120.4800
References:1. Шульман М.Я. Измерение передаточных функций оптических систем. Л.: Машиностроение, 1980. 208 с.
Shul’man M.Y. Measurement of the modulation transfer function of optical systems [in Russian]. L.: Mashinostroenie, 1980. 208 p.
2. Boreman G.D. Modulation transfer function in optical and electro-optical systems. Bellingham, Washington: SPIE Press, 2021. 156 с.
3. Кучко А.С. Аэрофотография. Основы и методология. М.: Недра, 1974. 272 с.
Kuchko A.S. Aerial photography. Basics and methodology [in Russian]. M.: Nedra, 1974. 272 p.
4. Ортоскопия фотограмметрических объективов / Русинов М.М., Афремов В.Г., Шахвердов А.Ш., Шлям Е.З. М.: Недра, 1976. 176 с.
Orthoscopy of photogrammetric lenses [in Russian] / Rusinov M.M., Afremov V.G., Shahverdov A.Sh., Shlyam E.Z. M.: Nedra, 1976. 176 p.
5. Васильева Е.Ю., Горшков В.А., Чурилин В.А. Многоспектральная установка на базе внеосевого зеркального коллиматора для контроля качества оптических систем // Контенант. 2015. Т. 14. № 1. С. 82–85.
Vasil’eva E.Y., Gorshkov V.A., Churilin V.A. Multispectral installation for an optical systems’ quality control based on an off-axis mirror collimator [in Russian] // Contenant. 2015. V. 14. № 1. P. 82–85.
6. Lengwenus A., Erichsen P. MTF measurement of infrared optical systems // Proc. SPIE 7481. Electro-Optical and Infrared Systems: Technology and Applications VI. Berlin, Germany. September 23, 2009. P. 74810V-1–74810V-9. https://doi.org/10.1117/12.829980
7. Schake M., Dierke H., Schulz M. Off-axis, slit based MTF measurements at PTB // Proc. SPIE 12607. Optical Technology and Measurement for Industrial Applications Conference. Yokohama, Japan. September 20, 2023. P. 1260703-1–1260703-9. https://doi.org/10.1117/12.3005522
8. Boucher W., Homassel E., Brahmi D., Gascon A., Wattellier B. Test bench for alignment and optical quality measurement of large-field of view objective // Freeform Optics 2017. Denver, Colorado, United States. July 9–13, 2017. P. JTu5A.28. https://doi.org/10.1364/FREEFORM.2017.jTu5A.28
9. Khatsevich T.N., Bodnarchuk A.I. Telecentric F-Theta lenses for scanning systems // Optoelectronics, Instrumentation and Data Processing. 2022. V. 58. № 3. P. 241–249. https://doi.org/10.3103/S8756699022030037
10. ГОСТ 20825-75 Объективы съемочные. Метод измерения дисторсии (с Изменением № 1). Введ. 01.01.1976. М.: Издательство стандартов, 1975. 10 с.
GOST (Russian National Standard) 20825-75 Camera lenses. Method for measurement of distortion [in Russian]. Introd. 01/01/1976. Moscow: Standarts Publ., 1975. 10 p.
11. ISO 9039:2008 Optics and photonics – Quality evaluation of optical systems – Determination of distortion. 02/15/2008. Geneva, ISO. 19 p.
12. Lee M., Kim H., Paik J. Correction of barrel distortion in fisheye lens images using image-based estimation of distortion parameters // IEEE Access. 2019. V. 7. P. 45723–45733. https://doi.org/10.1109/ACCESS.2019.2908451
13. Кунина И.А., Гладилин С.А., Николаев Д.П. Слепая компенсация радиальной дисторсии на одиночном изображении с использованием быстрого преобразования Хафа // Компьютерная оптика. 2016. Т. 40. № 3. С. 395–403.
Kunina I.A., Gladilin S.A., Nikolaev D.P. Blind radial distortion compensation in a single image using a fast Hough transform [in Russian] // Computer Optics. 2016. V. 40. № 3. P. 395–403.
14. Simioni E., Da Deppo V., Re C., Naletto G., Martellato E., Borrelli D., Dami M., Aroldi G., Veltroni I. F., Cremonese G. Geometrical distortion calibration of the stereo camera for the BepiColombo mission to Mercury // Proc. SPIE 9904, Space Telescopes and Instrumentation 2016: Optical, Infrared, and Millimeter Wave. Edinburgh, United Kingdom. July 29, 2016.
P. 990410-1–990410-19. https://doi.org/10.1117/12.2232639
15. Service M., Chun M., Lu J., Abdurrahman F., Lai O., Fohring D., Baranec C. Geometric distortion calibration using a pinhole mask // Proc. SPIE 10703, Adaptive Optics Systems VI. Austin, Texas, United States. July 18, 2018. P. 107034S. https://doi.org/10.1117/12.2313769
16. ГОСТ Р 58566-2019 Оптика и фотоника. Объективы для оптико-электронных систем. Методы испытаний. Введ. 27.09.2019. М.: Стандартинформ, 2019. 31 с.
GOST R (Russian National Standard) 58566-2019 Optics and photonics. Lenses for optical electronic systems. Test methods [in Russian]. Introd. 09/27/2019. Moscow: Standartinform, 2019. 31 p.
17. ISO 9335:2012. Optics and photonics – Optical transfer function – Principles and procedures of measurement.
10/01/2012. Geneva, ISO. 29 p.
18. Леонов М.Б., Терлецкий Е.С., Серегин Д.А. Влияние материала подложек и геометрических характеристик измерительных диафрагм на результаты измерения характеристик качества оптических систем инфракрасного диапазона спектра // Оптический журнал. 2023. Т. 90. № 7. С. 51–59. http://doi.org/10.17586/1023-5086-2023-90-07-51-59
Leonov M.B., Terletskiy E.S., Seregin D.A. Influence of substrate material and geometric features of measurement slits on the measurement results of infrared optical system quality characteristics // Journal of Optical Technology. 2023. V. 90. № 7. P. 384–389. https://doi.org/10.1364/JOT.90.000384
19. Широкоугольный атермальный объектив OptoTL 7,5 f/1,0 LWIR AT (оптический расчет и конструкция) // Опто-технологическая лаборатория [Электронный ресурс]. Режим доступа: https://optotl.ru/optical_assemblies/lwir-obektivy/optotl-7-5-f-1-0-lwir-at/, свободный. Яз. рус. (дата обращения 04.02.2025).
LWIR Lens F7,5 #1.0 Specifications // “Opto-Technological Laboratory” Ltd. [Electronic resource]. Access mode: https://optotl.com/optical_assemblies/lwir-lenses/body-temperature-measurement-lens-7-5-mm/, free. in English (accessed 02/04/2025).
20. Широкоугольный атермальный объектив OptoTL 15 f/1,0 LWIR AT (оптический расчет, конструкция и изготовление) // Опто-технологическая лаборатория [Электронный ресурс]. Режим доступа: https://optotl.ru/optical_assemblies/lwir-obektivy/optotl-15-f-1-0-lwir-at/, свободный. Яз. рус. (дата обращения 04.02.2025).
LWIR Lens F15 #1.0 Specifications // “Opto-Technological Laboratory” Ltd. [Electronic resource]. Access mode: https://optotl.com/optical_assemblies/lwir-lenses/body-temperature-measurement-lens-15-mm/, free. in English (accessed 02/04/2025).
21. ГОСТ Р 70038-2022 Оптика и фотоника. Объективы для оптико-электронных систем. Методы измерений фокусного расстояния. Введ. 01.03.2023. М.: Российский институт стандартизации, 2022. 20 с.
GOST R (Russian National Standard) 70038-2022 Optics and photonics. Lenses for optical electronic systems. Methods for measuring focal length. Introd. 01/03/2023. Moscow: Russian Standardization Institute, 2022. 20 с.
ru