DOI: 10.17586/1023-5086-2025-92-10-74-81
УДК: 549.514.51; 52-335.7; 534.522
Stabilization of quartz nanoparticles with graphene carbon for structuring optical media
Full text on elibrary.ru
Шарпарь Н.Д., Рожкова Н.Н. Стабилизация наночастиц кварца графеноподобным углеродом для модификации оптических сред // Оптический журнал. 2025. Т. 92. № 10. С. 74–81. http://doi.org/10.17586/10235086202592107481
Sharpar N.D., Rozhkova N.N. Stabilization of quartz nanoparticles with graphene carbon for structuring optical media [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 10. P. 74–81. http://doi.org/10.17586/10235086202592107481
Subject of study. Heattreated quartz nanoparticles of shungite rocks from the Maksovo deposit. Aim of study. To find out the role of graphenelike carbon in the structural and physicochemical properties of quartz nanoparticles, which are important for optical materials. Method. Quartz nanoparticles were heat treated in air at 400, 600 and 900 °C to remove graphenelike carbon. The treated particles were analyzed by Xray diffraction, Raman scattering, and scanning electron microscopy. Main results. The analysis of the initial quartz nanoparticles of shungite rocks with heattreated samples by Raman scattering showed that treatment of nanoparticles at lower temperatures (400–600 °C) leads to a decrease in carbon content, and at a temperature of 900 °C carbon can be removed from the surface of quartz nanocrystals. According to Xray diffraction analysis, heattreated quartz nanoparticles retain the structural parameters of the initial aquartz, but have a smaller crystallite size. In addition, the heattreated particles lose their stability in water and precipitate upon reconversion to aqueous dispersion. Practical significance. The removal of carbon from the surface of quartz nanoparticles of shungite rocks while preserving the original structure is the main step in obtaining high–purity quartz, which can be used in biomedicine and optics.
quartz nanoparticles of shungite rocks, Xray diffraction analysis, Raman spectroscopy, scanning electron microscopy
Acknowledgements:Sharpar N.D., Rozhkova N.N. Stabilization of quartz nanoparticles with graphene carbon for structuring optical media [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 10. P. 74–81. http://doi.org/10.17586/10235086202592107481
OCIS codes: 040.7480, 160.4236, 160.6030, 170.5660, 170.5810, 310.3840, 350.4990
References:1. Кузьмин Л.В. Высокочистые кварцевые концентраты. Применение в высокотехнологичной промышленности, современные требования к параметрам качества // Известия УГГУ. 2023. Вып. 3 (71). С. 94–99. https://doi.org/10.21440/2307-2091-2023-3-94-99
Kuzmin L.V. High-purity quartz concentrates. Application in high-tech industry, modern requirements for quality parameters [in Russian] // Izvestiya UGGU. 2023. V. 3 (71). P. 94–99. https://doi.org/10.21440/2307-2091-2023-3-94-99
- Santos M.F.M.D., Fujiwara E., Schenkel E.A. et al. Quartz resources in the Serra De Santa Helena formation, Brazil: A geochemical and technological study // J. S. Am. Earth Sci. 2014. V. 56. P. 328–338. https://doi.org/10.1016/j.jsames.2014.09.017
- Рожкова Н.Н., Ригаева Ю.Л., Рожков С.С. и др. Наноразмерный кварц и способ его получения // Патент РФ № 2778691. 2022. Rozhkova N.N., Rigaeva Y.L., Rozhkov S.S. et al. Nanosized quartz and method for its production // Patent RF № 2778691. 2022.
- Abdulagatov I.M., Emirov S.N., Tsomaeva T.A. et al. Thermal сonductivity of fused quartz and quartz ceramic at high temperatures and high pressures // J. Phys. Chem. Solids. 2000. V. 61. P. 779–787. https://doi.org/10.1016/S0022-3697(99)00268-1
- Wang Y.X., Hou Q.L., Tian L. et al. Effect of in situ synthesis of Si2N2O on microstructure and the mechanical properties of fused quartz ceramics // Ceram. Int. 2020. V. 46. P. 8725–8729. https://doi.org/10.1016/j.ceramint.2019.12.111
- Zhang M., Yang Y., Guo W. Electrochemical sensor for sensitive nitrite and sulfite detection in milk based on acid-treated Fe3O4@SiO2 nanoparticles // Food Chemistry. 2024. V. 430. https://doi.org/10.1016/j.foodchem.2023.137004
- Pan X., Li S., Li Y. et al. Resource, characteristic, purification and application of quartz: a review // Minerals Engineering. 2022. V. 183. https://doi.org/10.1016/j.mineng.2022.107600
- Cannon P., McGlynn E., O'Neill D. et al. Deposition of high-quality, nanoscale SiO2 films and 3D structures // Applied Materials Today. 2024. V. 38. P. 1–11. https://doi.org/10.1016/j.apmt.2024.102175
- Götze J., Möckel R. Quartz: Deposits, mineralogy and analytics. Berlin; Heidelberg: Springer-Verlag, 2012. 360 p.
- Li J., Wang Y., He X. et al. Facile and universal method to purify silica from natural sand // Green Process. Synth. 2022. V. 11. P. 907–914. https://doi.org/10.1515/gps-2022-0079
- Prasetyo A.B., Handayani M., Sulistiyono E. et al. Fabrication of high purity silica precipitates from quartz sand toward photovoltaic application // J. Ceram. Process. Res. 2023. V. 24. P. 103–110. https://doi.org/10.36410/jcpr.2023.24.1.103
- Rahimzadeh C.Y., Barzinjy A.A., Mohammed A.S. et al. Green synthesis of SiO2 nanoparticles from Rhus Coriaria L. extract: Comparison with chemically synthesized SiO2 nanoparticles // PLOS ONE. 2022. V. 17. № 8. e0268184. https://doi.org/10.1371/journal.pone.026818
- Saeed A., Abdulwahed J.A.M. Development and characterization of PVA-based nanocomposites with graphene and natural quartz nanoparticles for energy storage applications // Journal of Energy Storage. 2024. V. 98. Part B. https://doi.org/10.1016/j.est.2024.113138.
- Каманина Н.В., Лихоманова С.В., Рожкова Н.Н. Поляризационные плёнки для видимого диапазона спектра с наноструктурированной поверхностью на основе наночастиц кварца // Патент РФ № 2697413C1. 2019.
Kamanina N.V., Likhomanova S.V., Rozhkova N.N. Polarization films for visible spectrum with nanostructured surface based on quartz nanoparticles // Patent RF №. 2697413C1. 2019.
- Кривандин А.В., Соловьева А.Б., Шаталова О.В. и др. Характеристика минеральной фазы шунгитовых пород методом МУРР // Труды международного симпозиума «Углеродсодержащие формации в геологической истории» (2–7 июня 1998 г., Петрозаводск). 2000. С. 115–116.
Krivandin, A.V., Solovyova, A.B., Shatalova, O.V. et al. Characterization of the mineral phase of shungite rocks by the MURR method // Proceedings of the international symposium “Carbonaceous formations in geological History”. 2000. P. 115–116.
- Садовничий Р.В., Михайлина А.А., Рожкова Н.Н. и др. Морфологические и структурные особенности кварца шунгитовых пород Максовской залежи // Труды КарНЦ РАН. Геология докембрия. 2016. Т. 73. № 2. С. 73–88. https://doi.org/10.17076/geo126
Sadovnichy R.V., Mikhailina A.A., Rozhkova N.N. et al. Morphological and structural features of quartz from the shungite rocks of the Maksovskaya deposit // Proceedings of the KarRC RAS. Precambrian geology. 2016. V. 73. № 2. P. 73–88. https://doi.org/10.17076/geo126
- Шарпарь Н.Д., Ковальчук А.А., Горюнов А.С. и др. Исследование наноразмерного кварца шунгитовых пород // Оптический журнал. 2023. Т. 90. № 9. С. 102–113. http://doi.org/10.17586/1023-5086-2023-90-09-102-113
Sharpar N.D., Kovalchuk A.A., Goryunov A.S. et al. Study of nanosized quartz of shungite rocks [in Russian] // Journal of Optical Technology. 2023. V. 90. №. 9. P. 553–559. https://doi.org/10.1364/JOT.90.000553 - Rigaeva Y.L., Rozhkova N.N., Ekimova T.A. Studies of water treatment influence on the structure of vein quartz from shungite rocks // IOP Conference Series: Materials Science and Engineering (21st-25th September 2020, Tomsk). 2021. P. 1093.
- Каманина Н.В., Федорова Л.О., Лихоманова С.В. Тонкопленочные поляризаторы видимого спектрального диапазона с введенными наночастицами кварца: о возможном нарушении тенденции увеличения микротвердости при наноструктурировании полимерной матрицы // Жидкие кристаллы и их практическое использование. 2024. Т. 24. № 2. С. 75–82. https://doi.org/10.18083/LCAppl.2024.2.75
Kamanina N.V., Fedorova L.O., Likhomanova S.V. Thin-film polarizers of the visible spectral range with introduced quartz nanoparticles: on a possible violation of the trend of increasing microhardness during nanostructuring of a polymer matrix // Liquid crystal and their practical use. 2024. V. 24. № 2. P. 75–82. https://doi.org/10.18083/LCAppl.2024.2.75 - Рожкова Н.Н. Наноуглерод шунгитов / Н.Н. Рожкова. Петрозаводск: Карельский научный центр РАН, 2011. 100 с.
Rozhkova N.N. Nanocarbon of shungite / N.N. Rozhkova. Petrozavodsk: Karelian Research Center of RAS, 2011. 100 p. - Zaidenberg A.Z., Rozhkova N.N., Kovalevski V.V. et al. Shungite carbon and fullerenes // Fullerene Science and Technology. 1998. V. 6. № 3. P. 511−517.
- Golubev Y.A., Rozhkova N.N., Kabachkov E.N. et al. sp² amorphous carbons in view of multianalytical consideration: Normal, expected and new // Journal of Non-Crystalline Solids. 2019. V. 524. P. 119608. https://doi.org/10.48550/arXiv.1902.03265
- Klug H.P., Alexander H.P. X-ray diffraction procedures, for poly crystalline and amorphous materials. N.Y.: John Wiley & Sons, 1954. 746 p.
ru