DOI: 10.17586/1023-5086-2025-92-10-89-95
УДК: 535.016; 53.043
Modification of ZnS surface with carbon nanostructures for optoelectronics applications
Full text on elibrary.ru
Барнаш Я.В., Каманина Н.В. Модификация поверхности ZnS углеродными наноструктурами для задач оптоэлектроники // Оптический журнал. 2025. Т. 92. № 10. С. 89–95. http://doi.org/10.17586/10235086202592108995
Barnash Y.V., Kamanina N.V. Modification of ZnS surface with carbon nanostructures for optoelectronics applications [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 10. P. 89–95. http://doi.org/10.17586/10235086202592108995
Subject of study. This study investigates the surface of the semiconductor material — zinc sulfide (ZnS), which has been structured by vertically deposited carbon nanotubes. Aim of study. The objective of the study was to investigate the impact of structuring the ZnS surface with carbon nanotubes on spectral characteristics and mechanical properties, with a focus on studying changes in the light transmission coefficient. Method. The laserassisted oriented deposition method was applied for structuring the surfaces of inorganic materials with carbon nanotubes. Main results. The study established a correlation between the average surface roughness and the contact angle of wetting, as well as identified how these changes contribute to the formation of a new layer on the ZnS surface, which significantly affects the spectral characteristics of the material, including its light transmission. Practical significance. The results of this study can be applied in the field of optoelectronics for the development of new devices, specifically using materials modified with carbon nanostructures. The possibility of structuring the ZnS surface with carbon nanotubes opens prospects for creating devices with improved light, electrical, and mechanical characteristics.
ZnS, zinc sulfide, nanostructuring, carbon nanotubes, surface, spectrum, wettability, roughness
Acknowledgements:The authors would like to thank their colleagues at the S.I. Vavilov GOI, PIAF, and LETI for a useful discussion of the results of their work. Special thanks to D.G. Kvashnin (N.M. Emanuel Institute of Biochemical Physics, Russian Academy of Sciences, Moscow, Russia) for his help in quantum chemical modeling.
OCIS codes: 160.6000, 160.4236
References:1. Li X., Beibei Chen., Yuhan Jia et al. Enhanced tribological properties of epoxy-based lubricating coatings using carbon nanotubes-ZnS hybrid // Surface and Coating Technology. 2018. V. 344. P. 154–162. https://doi.org/10.1016/j.surfcoat.2018.03.006
2. Jannatul Islam A.S.M., Lipeng Jiang., Naiguang Wei et al. Chirality, temperature, and vacancy effects on mechanical behavior of monolayer zinc-sulfide // Computational Materials Science. 2021. P. 200(110824). https://doi.org/10.1002/crat.202000047
3. Wu S., Jingsong Zhao., Yuejin Jina Zhao et al. Preparation, composition, and mechanical properties of CVD polycrystalline ZnS // Infrared Physics & Technology. 2019. V. 98. P. 23–26. https://doi.org/10.1016/j.infrared.2018.12.009
4. Lahariya V., Dhoble S.J. Development and advancement of undoped and doped zinc sulfide for phosphor application // Displays. 2022. V. 74. P. 102177. https://doi.org/10.1016/j.displays.2022.102177
5. Kamanina N.V., Likhomanova S.V., Zagidullina Yu.R. Properties of optical ceramics CO1 and CO2 upon modification of their surface by carbon nanotubes // Letters to the Journal of Technical Physics. 2019. V. 45(15). P. 37–39. https://doi.org/10.21883/PJTF.2019.15.48085.17835
6. Kamanina N.V., Vasiliev P.Ya., Studenov V.I. Optical coating based on carbon nanotubes oriented in an electric field for optical instrumentation, micro- and nanoelectronics, for leveling the interface between solid substrate and coating // Russian Patent № 2405177. 2010.
7. Kamanina N.V., Likhomanova S.V., Kuzhakov P.V. Advantages of the surface structuration of KBr materials for spectrometry and sensors // Sensors. 2018. V. 18(9). P. 3013. 8 p. https://doi.org/10.3390/s18093013
8. National Standard of the Russian Federation. GOST R ISO 25178-2-2014. Geometrical product specifications (GPS). Surface texture. Areal. Part 2: Terms, definitions and surface texture parameters. Moscow: Standartinform, 2014. 52 p.
9. Reference Manual. Image Processing Module. Image Analysis P9. Zelenograd: NT-MDT, 2011. 120 p.
10. Voigt D., Sarpong L., Bredol M. Tuning the optical band gap of semiconductor nanocomposites — A case study with ZnS/carbon // Materials (Basel). 2020. V. 13. № 18. https://doi.org/10.3390/ma13184162
11. Debenham M. Refractive indices of zinc sulfide in the 0.405–13-µm wavelength range // Appl. Opt. 1984. V. 23. P. 2238–2239. https://doi.org/10.1364/AO.23.002238
12. Klein C.A. Room-temperature dispersion equations for cubic zinc sulfide // Appl. Opt. 1986. V. 25. P. 1873–1875. https://doi.org/10.1364/AO.25.001873
13. Fa W., Yang X., Chen J., Dong J. Optical properties of the semiconductor carbon nanotube intramolecular junctions // Phys. Lett. 2004. V. A323. P. 122–131. https://doi.org/10.1016/j.physleta.2004.01.037
14.ёTaherpour A.A., Aghagolnezhad‐Gerdroudbari A., Rafiei S. Theoretical and quantitative structural relationship studies of reorganization energies of [SWCNT(5,5)‐Armchair‐CnH20] (n = 20–310) nanostructures by neural network CFFBP method // Int. J. Electrochem. Sci. 2012. V. 7. P. 2468–2486. https://doi.org/10.1016/S1452-3981(23)13894-6
15. Yang Z.P., Ci L., Bur J.A., Lin S.Y., Ajayan P.M. Experimental observation of an extremely dark material made by a low‐density nanotube array // Nano Letters. 2008. V. 8. № 2. P. 446–451. https://doi.org/ 10.1021/nl072369t
16. Bao Hua, Ruan Xiulin, Fisher Timothy S. Optical properties of ordered vertical arrays of multi-walled carbon nanotubes from FDTD simulations // Optics Express. 2010. V. 18. № 6. P. 6347–6359. https://doi.org/10.1364/OE.18.006347
17. Song B., Liu F., Wang H., Miao J., Chen Y., Kumar P., Zhang H., Liu X., Gu H., Stach E.A., Liang X., Liu S., Fakhraai Z., Jariwala D. Giant gate-tunability of complex refractive index in semiconducting carbon nanotubes // ACS Photonics. 2020. № 7. P. 2896–2905.
18. Ermolaev G.A., Xie Y., Qian L., Tatmyshevskiy M.K., Slavich A.S., Arsenin A.V., Zhang J., Volkov V.S., Chernov A.I. Anisotropic optical properties of monolayer aligned single-walled carbon nanotubes // Phys. Status Solidi — Rapid Research Letters. 2023. V. 18. № 4. Publication Number 2300199. https://doi.orh/10.1002/pssr.202300199
19. Muhammad Atiq Ur Rehman, Qianq Chen, Annabel Braem, Milo S.P. Shaffer, Aldo R. Boccaccini. Electrophoretic deposition of carbon nanotubes: recent progress and remaining challenges // International Materials Reviews. 2021. V. 66:8. P. 533–562. https://doi.org/10.1080/09506608.2020.1831299
20. Vafaeva K.M., Zegait R. Carbon nanotubes: revolutionizing construction materials for a sustainable future: A review // Research on Engineering Structures and Materials. 2023. P. 1–55. https://doi.org/10.17515/resm2023.42ma0818rv
ru