DOI: 10.17586/1023-5086-2025-92-11-78-87
УДК: 546.47:546.06
Antibacterial coatings based on zinc oxide nanoparticles
Ултургашева Е.В., Настулявичус А.А., Толордава Э.Р., Кудряшов С.И. Антибактериальные покрытия на основе наночастиц оксида цинка // Оптический журнал. 2025. Т. 92. № 11. С. 78–87. http://doi.org/10.17586/1023-5086-2025-92-11-78-87
Ulturgasheva E.V., Nastulyavichus A.A., Tolordava E.R., Kudryashov S.I. Antibacterial coatings based on zinc oxide nanoparticles [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 11. P. 78–87. http://doi.org/10.17586/1023-5086-2025-92-11-78-87
Subject of study. Zinc oxide nanoparticle coatings. Aim of study. Development of effective technology for obtaining antibacterial coatings using the method of laser-induced forward transfer depending on the parameters of laser radiation and the scanning system. Method. The laser-induced backward transfer method is used to obtain the required pattern. Optical, scanning electron and probe microscopy are used to characterize the coating topography. Nanoparticle sizes are analyzed using dynamic light scattering. Main results. Depending on the transfer mode, both hydrophilic and hydrophobic coatings consisting of zinc oxide nanoparticles ranging in size from 16 to 458 nm are revealed. Antibacterial properties of the coatings against the gram-negative bacterium Pseudomonas aeruginosa are established. A study of bacterial viability using the LIVE/DEAD® BacLight staining kit confirmed the results of microbiological cultures. Practical significance. Zinc oxide nanoparticle-based coatings may serve as a basis for the development of antibacterial agents against a wide range of pathogenic microorganisms.
additive manufacturing, antibacterial coatings, antibacterial nanoparticles, laser-induced backward transfer
Acknowledgements:the study was supported by the Ministry of Science and Higher Education of the Russian Federation (agreement № 075-15-2023-603).
OCIS codes: 350.4990, 160.3900, 160.2750
References:- Puspasari V., Ridhova A., Hermawan A., et al. ZnO-based antimicrobial coatings for biomedical applications // Bioprocess Biosyst. Eng. 2022. V. 45. P. 1421–1445. https://doi.org/10.1007/s00449-022-02733-9
- Babayevska N., Przysiecka Ł., Iatsunskyi I., et al. ZnO size and shape effect on antibacterial activity and cytotoxicity profile // Sci. Rep. 2022. V. 12. P. 8148. https://doi.org/10.1038/s41598-022-12134-3
- Alexander J.W. History of the medical use of silver // Surgical Infections. 2009. V. 10. № 3. P. 289–292. https://doi.org/10.1089/sur.2008.9941
- Yasuyuki M., Kunihiro K., Kurissery S., et al. Antibacterial properties of nine pure metals: A laboratory study using Staphylococcus aureus and Escherichia coli // Biofouling. 2010. V. 26. № 7. P. 851–858. https://doi.org/10.1080/08927014.2010.527000
- Lemire J.A., Harrison J.J., Turner R.J. Antimicrobial activity of metals: Mechanisms, molecular targets and applications // Nat. Rev. Microbiol. 2013. V. 11. № 6. P. 371–384. https://doi.org/10.1038/nrmicro3028
- Turner R. Metal-based antimicrobial strategies // Microb. Biotechnol. 2017. V. 10. № 5. P. 1062–1065. https://doi.org/10.1111/1751-7915.12785
- Stadtman E. Oxidation of free amino acids and amino acid residues in proteins by radiolysis and by metal-catalyzed reactions // Annu. Rev. Biochem. 1993. V. 62. P. 797–821. https://doi.org/10.1146/annurev.bi.62.070193.004053
- Stadtman E.R., Levine R.L. Free radical-mediated oxidation of free amino acids and amino acid residues in proteins // Amino Acids. 2003. V. 25. № 3–4. P. 207–218. https://doi.org/10.1007/s00726-003-0011-2
- Valko M., Morris H., Cronin M.T. Metals, toxicity and oxidative stress // Curr. Med. Chem. 2005. V. 12. № 10. P. 1161–1208. https://doi.org/10.2174/0929867053764635
- Li W.R., Xie X.B., Shi Q.S., et al. Antibacterial activity and mechanism of silver nanoparticles on Escherichia coli // Appl. Microbiol. Biotechnol. 2009. V. 85. № 4. P. 1115–1122. https://doi.org/10.1007/s00253-009-2159-5
- Pereira Y., Lagniel G., Godat E., et al. Chromate causes sulfur starvation in yeast // Toxicol. Sci. 2008. V. 106. № 2. P. 400–412. https://doi.org/10.1093/toxsci/kfn193
- Nishioka H. Mutagenic activities of metal compounds in bacteria // Mutat. Res. 1975. P. 31. № 3. P. 185–189. https://doi.org/10.1016/0165-1161(75)90088-6
- Green M.H., Muriel W.J., Bridges B.A. Use of a simplified fluctuation test to detect low levels of mutagens // Mutat. Res. 1976. V. 38. № 1. P. 33–42. https://doi.org/10.1016/0165-1161(76)90077-7
- Wong P. Mutagenicity of heavy metals // Bull. Environ Contam. Toxicol. 1988. V. 40. № 4. P. 597–603. https://doi.org/10.1007/BF01688386
- Maret W. Metals on the move: Zinc ions in cellular regulation and in the coordination dynamics of zinc proteins // Biometals. 2011. V. 24. № 3. P. 411–418. https://doi.org/10.1007/s10534-010-9406-1
- Colon G., Ward B.C., Webster T.J. Increased osteoblast and decreased Staphylococcus epidermidis functions on nanophase ZnO and TiO2 // J. Biomed. Mater. Res. 2006. V. 78. № 3. P. 595–604. https://doi.org/10.1002/jbm.a.30789
- Applerot G., Lipovsky A., Dror R., et al. Enhanced antibacterial activity of nanocrystalline ZnO due to increased ROS-mediated cell injury // Adv. Funct. Mater. 2009. V. 19. P. 842–852. https://doi.org/10.1002/adfm.200801081
- Raghupathi K.R., Koodali R.T., Manna A.C. Size-dependent bacterial growth inhibition and mechanism of antibacterial activity of zinc oxide nanoparticles // Langmuir. 2011. V. 27. № 7. P. 4020–4028. https://doi.org/10.1021/la104825u
- Padmavathy N., Vijayaraghavan R. Enhanced bioactivity of ZnO nanoparticles — an antimicrobial study // Sci. Technol. Adv. Mater. 2008. V. 9. № 3. P. 035004. https://doi.org/10.1088/1468-6996/9/3/035004
- Варламов П.В., Михайлова Ю.В., Андреева Я.М. и др. Исследование влияния параметров лазерной обработки на спектральные характеристики серебросодержащих пленок диоксида титана // Науч.-техн. вест. инф. технол., механики и оптики. 2020. Т. 20. № 5. С. 634–641. https://doi.org/10.17586/2226-1494-2020-20-5-634-641
Varlamov P.V., Mikhailova Yu.V., Andreeva Ya.M., et al. Study of the influence of laser processing parameters on the spectral characteristics of silver-containing titanium dioxide films [in Russian] // Sci. Tech. J. Inf. Technol. Mech. Opt. 2020. V. 20. № 5. P. 634–641. https://doi.org/10.17586/2226-1494-2020-20-5-634-641
- Li M., Schlaich C., Kulka M.W., et al. Mussel-inspired coatings with tunable wettability, for enhanced antibacterial efficiency and reduced bacterial adhesion // J. Mater. Chem. B. 2019. V. 7. № 21. P. 3438–3445. https://doi.org/10.1039/C9TB00534J
- Drelich J., Chibowski E. Superhydrophilic and superwetting surfaces: Definition and mechanisms of control // Langmuir. 2010. V. 26. № 24. P. 18621–18623. https://doi.org/10.1021/la1039893
ru