DOI: 10.17586/1023-5086-2025-92-11-88-98
УДК: 612.82, 004.94
Development of a method for increasing the resolution of neuroimaging based on solving the inverse problem of electroencephalography
Жданов А.Ю., Рыжова В.А., Коротаев В.В. Разработка методики повышения разрешения нейровизуализации на основе решения обратной задачи электроэнцефалографии // Оптический журнал. 2025. Т. 92. № 11. С. 88–98. http://doi.org/10.17586/1023-5086-2025-92-11-88-98
Zhdanov A.Y., Ryzhova V.A., Korotaev V.V. Development of a method for increasing the resolution of neuroimaging based on solving the inverse problem of electroencephalography [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 11. P. 88–98. http://doi.org/10.17586/1023-5086-2025-92-11-88-98
Subject of the study. Spatial resolution of functional image obtained by solving the inverse problem of electroencephalography. Objective of the work. Development of a method for increasing the functional image spatial resolution and the algorithm choice optimization for generating a functional image using metrics of neural activity distributions statistical analysis. Method. Modeling of the solution of the inverse electroencephalography problem was performed using the MNE-python library of the python language. A design of a computational experiment was developed using electroencephalography and functional magnetic resonance imaging data to verify the developed methodology. Main results. A method for integrating spatial filtering into neuroimaging algorithms has been developed, which allows doubling the spatial resolution of a functional image using only functional electroencephalography data. A metric for assessing the spatial resolution of a neuroimaging method is proposed, which allows unambiguously selecting an algorithm for processing a functional image. Practical significance. The method of spatial filtering of functional images allows distinguishing sources of electrophysiological signals within 20 mm. The developed criterion for assessing the quality of a functional image allows selecting the optimal image processing algorithm for a specific application problem.
inverse problem, neuroimaging, spatial resolution, filtering, functional image
Acknowledgements:the study was supported by the State funding allocated to the Pavlov Institute of Physiology of the RAS (№1021062411653-4-3.1.8)
OCIS codes: 170.0170, 110.0110, 330.0330
References:1. Varone G., Boulila W., Driss M., et al. Finger pinching and imagination classification: A fusion of CNN architectures for IoMT-enabled BCI applications // Information Fusion. 2024. V. 101. Article 102006. https://doi.org/10.1016/j.inffus.2023.102006
2. Angrick M., Luo S., Rabbani Q., et al. Online speech synthesis using a chronically implanted brain-computer interface in an individual with ALS // Sci. Rep. 2024. 14. Article 9617. https://doi.org/10.1038/s41598-024-60277-2
3. Hu H., Wang Z., Zhao X., et al. A survey on brain-computer interface-inspired communications: Opportunities and challenges // IEEE Commun. Surveys & Tutorials. 2025. Feb. V. 27. Iss. 1. P. 108–139. https://doi.org/10.1109/COMST.2024.3396847
4. Awuah W.A., Ahluwalia A., Darko K., et al. Bridging minds and machines: The recent advances of brain-computer interfaces in neurological and neurosurgical applications // World Neurosurgery. 2024. Sep. V. 189. P. 138–153. https://doi.org/10.1016/j.wneu.2024.05.104
5. Gulyaev S.A. EEG microstate analysis and the eeg inverse problem solution as a tool for diagnosing cognitive dysfunctions in individuals who have had a mild form of COVID-19 // Human Physiology. 2022. V. 48. P. 587–597. https://doi.org/10.1134/S0362119722600217
6. Khosravi M., Bahrami F., Moshiri B., et al. Solving the inverse problem for EEG signals when learning a new motor task using GRU neural network // 31st Intern. Conf. Electrical Engineering (ICEE). 2023. P. 910–914. https://doi.org/10.1109/ICEE59167.2023.10334704
7. Wei H., Jafarian A., Zeidman P., et al. Bayesian fusion and multimodal DCM for EEG and fMRI // NeuroImage. 2020. May. V. 211. Article 116595. https://doi.org/10.1016/j.neuroimage.2020.116595
8. Marino M., Mantini D. Human brain imaging with high-density electroencephalography: Techniques and applications // J. Physiol. 2024. Aug. https://doi.org/10.1113/JP286639
9. Samuelsson J.G., Peled N., Mamashli F., et al. Spatial fidelity of MEG/EEG source estimates: A general evaluation approach // Neuroimage. 2021. Jan. 1. V. 224. Article 117430. https://doi.org/10.1016/j.neuroimage.2020.117430
10. Engl H.W., Groetsch C.W. (ed.). Inverse and Ill-posed Problems. Academic Press, 1987. V. 4. P. 567
11. Hämäläinen M.S., Ilmoniemi R.J. Interpreting magnetic fields of the brain: Minimum norm estimates // Med. Biol. Eng. Comput. 1994. Jan. V. 32(1). P. 35–42. https://doi.org/10.1007/BF02512476
12. Zhdanov A.Y., Ryzhova V.A., Kravtsov P.A., et al. Research of the influence of linearly constrained spatial filtering on the spatial resolution of an EEG-based neuroimaging method for BCI usage // XXXIII Intern. Sci. Conf. Electronics (ET). Sozopol, Bulgaria. 2024. P. 1–4. https://doi.org/10.1109/ET63133.2024.10721564
13. Dale A.M., Liu A.K., Fischl B.R., et al. Dynamic statistical parametric mapping: Combining fMRI and MEG for high-resolution imaging of cortical activity // Neuron. 2000. Apr. V. 26(1). P. 55–67. https://doi.org/10.1016/s0896-6273(00)81138-1
14. Pascual-Marqui R.D. Standardized low-resolution brain electromagnetic tomography (sLORETA): Technical details // Methods Find. Exp. Clin. Pharmacol. 2002. V. 24. URL: https://pubmed.ncbi.nlm.nih.gov/12575463/
15. Hauk O., Stenroos M., Treder M.S. Towards an objective evaluation of EEG/MEG source estimation methods — The linear approach // Neuroimage. 2022. Jul. V. 255. Article 119177. https://doi.org/10.1016/j.neuroimage.2022.119177
16. Larson E., Gramfort A., Engemann D.A., et al. MNE-Python // Zenodo. Jan. 2024. Version v1.6.1. https://doi.org/10.5281/zenodo.10519948
ru