DOI: 10.17586/1023-5086-2025-92-11-99-110
УДК: 535.8
Design of a multispectral device for non-invasive vein visualization with projection onto skin surface
Subject of study. Two-channel optical system for vein morphology imaging and projection of binary vein map onto skin surface. Method. Base optical system synthesis was based on algebraic synthesis method. Parametric synthesis was conducted via method of mathematical optimization of constructive parameters. Main results. A layout of a two-channel optical system with a joint element, free from geometric distortions of the image, is proposed. Illumination wavelength choice for registration channel was justified. A multispectral design of the registration channel with obtaining spectral images without scanning (snapshot) is proposed. Dimensional synthesis methodology, including multispectral registration channel design, was produced, based on which optical system was designed. Practical significance. Designed two-channel system may be used in various medical applications that utilize vein morphology visualization, as example — obstructions detection and surgery preparation. With effective algorithms of multi wavelength index images calculation, multispectral design allows to solve the problem of vein morphology imaging for patients with darker skin tones.
multispectral optical system, near infrared spectral range, optical projection system, vein visualization
Acknowledgements:this work was supported by STC UI RAS State assignment (project FFNS-2025-0008).
OCIS codes: 060.5530, 050.1590, 060.5625
References:1. Raets M., Dudink J., Raybaud C., et al. Brain vein disorders in newborn infants // Dev. Med. Child. Neurol. 2015. V. 57. P. 229–240. http://doi.org/10.1111/dmcn.12579
2. Zanaboni C., Bevilacqua M., Bernasconi F., et al. Caliber of the deep veins of the arm in infants and neonates: The VEEIN study (Vascular Echography Evaluation in Infants and Neonates) // J. Vasc. Acc. 2024. V. 25. № 4. P. 1114–1120. http://doi.org/10.1177/11297298221150942
3. Gallieni M., Pittiruti M., Biffi R. Vascular access in oncology patients // CA: Cancer J. Clin. 2008. V. 58. P. 323–346. http://doi.org/10.3322/CA.2008.0015
4. Crosbie Ph., Shah R., Krysiak P., et al. Circulating tumor cells detected in the tumor-draining pulmonary vein are associated with disease recurrence after surgical resection of NSCLC // J. Thor. Oncol. 2016. V. 11. № 10. P. 1793–1797. http://doi.org/10.1016/j.jtho.2016.06.017
5. Hussain Sh., Mubeen Iq., Ullah N., et al. Modern diagnostic imaging technique applications and risk factors in the medical field: A review // Biomed. Res. Int. 2022. P. 5164970. http://doi.org/10.1155/2022/5164970
6. Onishi N., Kataoka M., Kanao S., et al. Ultrafast dynamic contrast-enhanced MRI of the breast using compressed sensing: Breast cancer diagnosis based on separate visualization of breast arteries and veins // J. Magn. Reson. Imaging. 2018. V. 47. P. 97–104. http://doi.org/10.1002/jmri.25747
7. Adusumilli G., Christensen S., Yuen N., et al. CT perfusion to measure venous outflow in acute ischemic stroke in patients with a large vessel occlusion // J. Neuro Interv. Surg. 2024 V. 16. P. 1046–1052. http://doi.org/10.1136/jnis-2023-020727
8. Attia A., Moothanchery M., Li X., et al. Microvascular imaging and monitoring of hemodynamic changes in the skin during arterial-venous occlusion using multispectral raster-scanning optoacoustic mesoscopy // Photoacoustics. 2021. V. 22. P. 100268. http://doi.org/10.1016/j.pacs.2021.100268
9. Freund K.B., Sarraf D., Leong B.C.S., et al. Association of optical coherence tomography angiography of collaterals in retinal vein occlusion with major venous outflow through the deep vascular complex // JAMA Ophthalmol. 2018. V. 136. № 11. P. 1262–1270. http://doi.org/10.1001/jamaophthalmol.2018.3586
10. Shourav M.K., Choi J., Kim J.K. Visualization of superficial vein dynamics in dorsal hand by near-infrared imaging in response to elevated local temperature // J. Biomed. Opt. 2021. V. 26. № 2. P. 026003. http://doi.org/10.1117/1.JBO.26.2.026003
11. Kacmaz S., Ercelebi E., Zengin S., et al. The use of infrared thermal imaging in the diagnosis of deep vein thrombosis // Infrared Phys. Technol. 2017. V. 86. P. 120–129. http://doi.org/10.1016/J.INFRARED.2017.09.005
12. Lazareva E.N., Tuchin V.V. Measurement of refractive index of hemoglobin in the visible/NIR spectral range // J. Biomed. Opt. 2018. V. 23. № 3. P. 035004. http://doi.org/10.1117/1.JBO.23.3.035004
13. Pan C.T., Francisco M.D., Yen Ch.K., et al. Vein pattern locating technology for cannulation: A review of the low-cost vein finder prototypes utilizing near infrared (NIR) light to improve peripheral subcutaneous vein selection for phlebotomy // Sensors. 2019. V. 19. P. 3573. https://doi.org/10.3390/s19163573
14. Dorotić A., Kuktić I., Vuljanić D., et al. Verification of technical characteristics and performance of VeinViewer Flex, ICEN IN-G090-2 and AccuVein AV400 transillumination devices // Clin. Chim. Acta. 2021. V. 519. P. 40–47. http://doi.org/10.1016/j.cca.2021.04.001
15. Shahzad A., Saad N.M., Walter N., et al. Hyperspectral venous image quality assessment for optimum illumination range selection based on skin tone characteristics // Biomed. Eng. Line. 2014. V. 13. P. 109. https://doi.org/10.1186/1475-925X-13-109
16. Wang F., Behrooz A., Morris M., et al. High-contrast subcutaneous vein detection and localization using multispectral imaging // J. Biomed. Opt. 2013. V. 18. P. 050504. http://doi.org/10.1117/1.JBO.18.5.050504
17. Букова В.И., Крюков А.В. Устройство для неинвазивной визуализации сосудов // Тр. XVII Междунар. научно-техн. конф. Акустооптические и радиолокационные методы измерения и обработки информации — ARMIMP-2024. Суздаль, Россия. 23–26 сентября 2024. С. 321–324.
Bukova V.I., Kryukov A.V. Optical system design for vein contrast enhancement on skin [in Russian] // XVII Intern. Conf. Acoustooptic and radar methods for information measurements and processing — ARMIMP-2024 (Abstract of reports). Suzdal, Russia. September 23–26, 2024. P. 321–324.
18. Zhang H., Salo D.C., Kim D.M., et al. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries // J. Biomed. Opt. 2016. V. 21. № 12. P. 126006. http://doi.org/10.1117/1.JBO.21.12.126006
19. Hamza M., Skidanov R., Podlipnov V. Visualization of subcutaneous blood vessels based on hyperspectral imaging and three-wavelength index images // Sensors. 2023. V. 23. P. 8895. https://doi.org/10.3390/s23218895
20. Mzoughi M., Thiem D., Hornberger C. Blood vessel detection using hyperspectral imaging // Curr. Dir. Biomed. Eng. 2022. V. 8. P. 715–718. https://doi.org/10.1515/cdbme-2022-1182
21. Hagen N.A., Kudenov M.W. Review of snapshot spectral imaging technologies // Opt. Eng. 2013. V. 52. № 9. P. 090901. https://doi.org/10.1117/1.OE.52.9.090901
22. Батшев В.И., Крюков А.В., Мачихин А.С. и др. Оптическая система мультиспектральной видеокамеры // Оптический журнал. 2023. Т. 90. № 11. С. 113–123. http://doi.org/10.17586/1023-5086-2023-90-11-113-123
Batshev V.I., Krioukov A.V., Machikhin A.S. et al. Multispectral video camera optical system // J. Opt. Technol. 2023. V. 90. P. 706–712. http://doi.org/10.1364/jot.90.000706
23. Крюков А.В, Поспехов В.Г., Ровенская Т.С. и др. Компьютерный синтез оптических систем: уч. пособ. в 2 ч. Ч. 2. М.: изд. МГТУ им. Н.Э. Баумана, 2010. 62 с.
Kryukov A.V., Pospekhov V.G., Rovenskaya T.S., et al. Optical systems computer synthesis: Tutorial in 2 ch. Ch. 2 [in Russian]. Moscow: BMSTU Press., 2010. 62 p.
ru