DOI: 10.17586/1023-5086-2025-92-12-12-20
УДК: 621.373.826
Maximum wall-plug efficiency of 1300 nm single-frequency vertical-cavity surface emitting lasers
Копытов П.Е., Бабичев А.В., Карачинский Л.Я., Новиков И.И., Андрюшкин В.В., Гладышев А.Г., Папылев Д.С., Воропаев К.О., Блохин С.А., Ковач Я.Н., Тиэн С.-С., Бимберг Д., Егоров А.Ю. Максимальный КПД одночастотных вертикально-излучающих лазеров, излучающих на длине волн вблизи 1300 нм // Оптический журнал. 2025. Т. 92. № 12. С. 12–20. http://doi.org/10.17586/1023-5086-2025-92-12-12-20
Kopytov P.E., Babichev A.V., Karachinsky L.Ya., Novikov I.I., Andryushkin V.V., Gladyshev A.G., Papylev D.S., Voropaev K.O., Blokhin S.A., Kovach Ya.N., Tian S.-C., Bimberg D., Egorov A.Yu. Maximum wall-plug efficiency of 1300 nm single-frequency vertical-cavity surface emitting lasers [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 12. P. 12–20. http://doi.org/10.17586/1023-5086-2025-92-12-12-20
Scope of research. 1300 nm single-frequency vertical-cavity surface-emitting lasers, fabricated using a combination of wafer fusion technique and molecular beam epitaxy. The purpose of the work is to define tunnel junction mesa diameter of 1300 nm single-frequency vertical-cavity surfaceemitting that provides maximum wall-plug efficiency at temperatures from 20 to 100 °C. Method. Vertical-cavity surface-emitting laser heterostructures were fabricated using the wafer fusion of two distributed Bragg reflector heterostructures and an active region heterostructure with buried tunnel junction. Semiconductor heterostructures, including GaAs/AlGaAs distributed Bragg reflector heterostructures grown on GaAs substrates, and an active region heterostructure with an InGaAs/InAlAs/InP buried tunnel junction on an InP substrate, were fabricated using molecular beam epitaxy. Main results. It has been determined that maximum wall-plug efficiency of 1300 nm singlefrequency vertical-cavity surface-emitting lasers fabricated using a combination of wafer fusion technique and molecular beam epitaxy can be achieved for lasers with a 6 μm buried tunnel junction mesa diameter and it varies from 30% at a temperature of 20 °C to 7% at a temperature of 100 °C. Practical significance. When designing laser arrays based on single-frequency long-wavelength vertical-cavity surface-emitting lasers, it is essential to utilize lasers with maximum efficiency to minimize heat generation from the array. Analysis of the obtained results leads to the conclusion that vertical-cavity surface-emitting laser diodes with a buried tunnel junction diameter of 6 μm tends to be the optimal choice for this application.
VCSEL, wafer-fusion, molecular beam epitaxy, wall-plug efficiency, energy-efficiency, buried tunnel junction
Acknowledgements:the work of the authors from ITMO University on the analysis of static performance of the lasers was supported by the Ministry of Science and Higher Education of the Russian Federation (State Assignment No. FSER-2025-0025)
OCIS codes: 140.5960, 250.5960, 140.7260, 250.7260, 160.6000, 060.4510
References:1. Khanam R., Hussain M., Hill R., Allen P. A comprehensive review of convolutional neural networks for defect detection in industrial applications // IEEE Access. 2024. V. 12. P. 94250–94295. https://doi.org/10.1109/ACCESS.2024.3425166
2. Cheng H., Zhang M., Shi J.Q. A survey on deep neural network pruning: Taxonomy, comparison, analysis, and recommendations // IEEE Trans. Pattern Anal. Mach. Intell. 2024. V. 46. № 12. P. 10558–10578. https://doi.org/10.1109/TPAMI.2024.3447085
3. Fu T., Zhang J., Sun R. et al. Optical neural networks: progress and challenges // Light Sci. Appl. 2024. V. 13. P. 263. https://doi.org/10.1038/s41377-024-01590-3
4. Zhou T., Lin X., Wu J. et al. Large-scale neuromorphic optoelectronic computing with a reconfigurable diffractive processing unit // Nat. Photonics. 2021. V.15. P. 367–373. https://doi.org/10.1038/s41566-021-00796-w
5. Wang Z., Chang L., Wang F. et al. Integrated photonic metasystem for image classifications at telecommunication wavelength // Nat Commun. 2022. V. 13. P. 2131. https://doi.org/10.1038/s41467-022-29856-7
6. Qian C., Lin X., Lin X. et al. Performing optical logic operations by a diffractive neural network // Light Sci Appl. 2020. V. 9. P. 59. https://doi.org/10.1038/s41377-020-0303-2
7. Chen Z., Sludds A., Davis R. et al. Deep learning with coherent VCSEL neural networks // Nat. Photon. 2023. V. 17. P. 723–730. https://doi.org/10.1038/s41566-023-01233-w
8. Müller M., Wolf P., Gründl T. 1.3 μm short-cavity VCSELs for 30 Gb/s error-free optical links // ISLC 2012 International Semiconductor Laser Conference. San Diego, USA. October 07–10, 2012. P. 1–2. https://doi.org/10.1109/ISLC.2012.6348316
9. Caliman A., Mereuta A., Wolf P. et al. 25 Gbps direct modulation and 10 km data transmission with 1310 nm waveband wafer fused VCSELs // Opt. Express. 2016. V 24. P. 16329–16335. https://doi.org/10.1364/OE.24.016329
10. Müller M., Wolf P., Grasse C. et al. 1.3 µm short-cavity VCSELs enabling error-free transmission at 25 Gbit/s over 25 km fibre link // Electr. Lett. 2012. V. 48. № 23. P. 1487–1489. https://doi.org/10.1049/el.2012.3355
11. Spiga S., Soenen W., Andrejew A. et al. Single-mode high-speed 1.5-μm VCSELs // J. Lightwave Technol. 2017. V. 35. № 4. P. 727–733. https://doi.org/10.1109/JLT.2016.2597870
12. Caliman A., Mereuta A., Suruceanu G. et al. 8 mW fundamental mode output of wafer-fused VCSELs emitting in the 1550-nm band // Opt. Express. 2011. V. 19. № 18. P. 16996–17001. https://doi.org/10.1364/OE.19.016996
13. Блохин С.А., Бобров М.А., Блохин А.А. и др. Влияние латерального оптического ограничения на характеристики вертикально-излучающих лазеров cпектрального диапазона 1,55 мкм с заращенным туннельным переходом // Письма в журнал технической физики. 2021. Т. 47. № 22. С. 3–8. http://doi.org/10.21883/PJTF.2021.22.51717.18942
Blokhin S.A., Bobrov M.A., Blokhin A.A. et al. Impact of transverse optical confinement on performance of 1.55 μm vertical-cavity surface-emitting lasers with a buried tunnel junction // Tech. Phys. Lett. 2022. V. 48. № 14. P. 46–50. http://doi.org/10.21883/PJTF.2021.22.51717.18942
14. Amann M.-C., Hofmann W. InP-based long-wavelength VCSELs and VCSEL arrays for high-speed optical communication // IEEE J. Sel. Top. Quantum Electron. 2009. V. 15. № 3. P. 861–868. https://doi.org/10.1109/JSTQE.2009.2013182
15. Блохин С.А., Ковач Я.Н., Бобров М.А. и др. Энергоэффективность вертикально-излучающих лазеров спектрального диапазона 1,55 мкм с активной областью на основе напряжённых квантовых ям InGaAs/InAlGaAs // Оптический журнал. 2024. Т. 91. № 12. С. 35–45. http://doi.org/10.17586/1023-5086-2024-91-12-35-45
Blokhin S.A., Kovach Ya.N., Bobrov M.A. et al. Energy efficiency of optical data transmission by 1.55 μm range vertical-cavity surface-emitting laser with the active region based on InGaAs/InAlGaAs quantum wells [in Russian] // Zhurnal of Optical Technology. 2024. V. 91. № 12. P. 796–802. https://doi.org/10.1364/JOT.91.000796
16. Babichev A.V., Kovach Ya.N., Blokhin S.A. et al. Longwavelength VCSELs with buried tunnel junction: design optimization // J. Phys. Photonics. 2025. V. 7. № 3. P. 032001. https://doi.org/10.1088/2515-7647/ade5de
17. Blokhin S.A., Babichev A.V., Gladyshev A.G. et al. High power single mode 1300-nm superlattice based VCSEL: Impact of the buried tunnel junction diameter on performance // Journal of Quantum Electronics. 2022. V. 58. № 2. P. 2400115. https://doi.org/10.1109/JQE.2022.3141418
18. Ortsiefer M., Shau R., Böhm G. et al. Low-threshold index-guided 1.5 μm long-wavelength vertical-cavity surface-emitting laser with high efficiency // Appl. Phys. Lett. 2000. V. 76. № 16. P. 2179–2181. https://doi.org/10.1063/1.126290
19. Hegblom E.R., Babic D.I., Thibeault B.J. et al. Scattering losses from dielectric apertures in vertical-cavity lasers // IEEE J. Sel. Top. Quantum Electron. 1997. Т. 3. № 2. P. 379–389. https://doi.org/10.1109/2944.605682
20. Блохин С.А., Бобров, Блохин А.А. и др. Эффект насыщающегося поглотителя в длинноволновых вертикально-излучающих лазерах, реализованных по технологии спекания // Письма в ЖТФ. 2020. Т. 46. № 24. С. 49–54. http://doi.org/10.21883/PJTF.2020.24.50430.18522
Blokhin S.A., Bobrov M.A., Blokhin A.A. et al. The effect of a saturable absorber in long-wavelength verticalcavity surface-emitting lasers fabricated by wafer fusion technology // Tech. Phys. Lett. 2020. V. 46. № 12. P. 1257–1262. http://doi.org/10.1134/S1063785020120172
21. Lysak V.V., Chang K.S., Lee Y.T. Current crowding in graded contact layers of intracavity-contacted oxideconfined vertical-cavity surface-emitting lasers // Appl. Phys. Lett. 2005. V. 87. № 23. P. 231118. https://doi.org/10.1063/1.2140886
ru