ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-12-3-11

УДК: 535.93

Study of thermo-optical properties of lithium niobate on an insulator at cryogenic temperatures

For Russian citation (Opticheskii Zhurnal):

Венедиктов И.О., Кобцев Д.М., Святодух С.С., Голиков А.Д., Ан П.П., Ковалюк В.В., Гольцман Г.Н. Изучение термооптических свойств ниобата лития на изоляторе при криогенных температурах // Оптический журнал. 2025. Т. 92. № 12. С. 3–11. http://doi.org/10.17586/1023-5086-2025-92-12-3-11

 

Venediktov I.O., Kobtsev D.M., Svyatodukh S.S., Golikov A.D., An P.P., Kovalyuk V.V., Goltsman G.N. Study of thermo-optical properties of lithium niobate on an insulator at cryogenic temperatures [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 11. P. 3–11. http://doi.org/10.17586/1023-5086-2025-92-12-3-11

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. Thermo-optical properties of lithium niobate on an insulator when the temperature drops from room temperature to helium. Aim of the work. Determination of the temperature dependence of the effective refractive index of a waveguide over a wide temperature range (6–294 K). Method. The measured transmission spectra of silicon nitride microring resonators in a cryostat were processed and compared with literature data to confirm the correctness of the technique used. Then, repeated measurements of the transmission spectra of lithium niobate microring resonators in a cryostat were carried out, followed by mathematical processing of the experimental data. Main results. The values of the rate of change of the effective refractive index of lithium niobate on the insulator were found to be 8,81×10–6 K–1 at 294 K and 2,74×10–7 K–1 at 6 K. The Q-factor values varied parabolically from 20,000 (292 K) to 18,000 (6 K) with a maximum of 24,000 at a temperature of 150 K. Practical significance. Results obtained can be used to design integrated optics devices made of lithium niobate operating at cryogenic temperatures to create a quantum computer powered by photons and ions.

Keywords:

integrated optics, lithium niobate on an insulator, silicon nitride, thermo-optical effect

Acknowledgements:

the work was supported by the Russian Science Foundation grant No. 23-79-00056 (experimental study of photonic integrated circuit) and the Ministry of Science and Higher Education FSME-2025-0004 (fabrication of photonic integrated circuit)

OCIS codes: 130.3120, 130.3730

References:
1. Ladd T., Jelezko F., Laflamme R., et al. Quantum computers // Nature. 2010. V. 464. № 7285. P. 45–53.  https://doi.org/10.1038/nature08812
2. Gambetta J.M., Chow J.M., Steffen M. Building logical qubits in a superconducting quantum computing system // NPJ Quantum Inf. 2017. V. 3. № 1. P. 2. https://doi.org/10.1038/s41534-016-0004-0
3. Zhong H.S., Wang H., Dang Y.H., et al. Quantum computational advantage using photons // Science. 2020. V. 370. № 6523. P. 1460–1463. https://doi.org/10.1126/science.abe8770
4. Knill E., Laflamme R., Milburn G.J. A scheme for efficient quantum computation with linear optics // Nature. 2001. V. 409. № 6816. P. 46–52.
   https://doi.org/10.1038/35051009
5. Ковалюк В.В., Венедиктов И.О., Седых К.О. и др. Волноводный сверхпроводниковый однофотонный детектор для фотонного и ионного квантовых процессоров и нейроморфных вычислений // Известия вузов. Радиофизика. 2023. Т. 66. № 11. С. 927–985. https://doi.org/10.52452/00213462_2023_66_11_927
Kovalyuk V.V., Venediktov I.O., Sedykh K.O., et al. Waveguide integrated superconducting single-photon detector for photonic and ion quantum processors and neuromorphic computing // Radiophysics and Quantum Electronics. 2024. V. 66. № 11. P. 839–892.
https://doi.org/10.1007/s11141-024-10340-9
6. Giordani T., Hoch F., Carvacho G., et al. Integrated photonics in quantum technologies // La Rivista del Nuovo Cimento. 2023. V. 46. № 2. P. 71–103. https://doi.org/10.1007/s40766-023-00040-x
7. O‘Brien J.L., Pryde G.J., White A.G., et al. Demonstration of an all-optical quantum controlled-NOT gate // Nature. 2003. V. 426. № 6964. P. 264–267. https://doi.org/10.1038/nature02054
8. Gol’Tsman G.N., Okunev O., Chulkova G., et al. Picosecond superconducting single-photon optical detector // Appl. Phys. Lett. 2001. V. 79. № 6. P. 705–707.
https://doi.org/10.1063/1.1388868
9. Kahl O., Ferrari S., Kovalyuk V., et al. Waveguide integrated superconducting single-photon detectors with high internal quantum efficiency at telecom wavelengths // Sci. Rep. 2015. V. 5. № 1. P. 10941. https://doi.org/10.1038/srep10941
10. Pernice W.H.P., Schuck S., Minaeva O., et al. Highspeed and high-efficiency travelling wave single-photon detectors embedded in nanophotonic circuits // Nat. Commun. 2012. V. 3. № 1. P. 1325.
https://doi.org/10.1038/ncomms2307
11. Sayem A.A., Cheng R., Wang S., et al. Lithium-niobate-on-insulator waveguide-integrated superconducting nanowire single-photon detectors // Appl. Phys. Lett. 2020. V. 116. № 15. https://doi.org/10.1063/1.5142852
12. Akhlaghi M.K., Schelew E., Young J.F. Waveguide integrated superconducting single-photon detectors implemented as near-perfect absorbers of coherent radiation // Nat. Commun. 2015. V. 6. № 8233. https://doi.org/10.1038/ncomms9233
13. Celler G.K., Barr D.L., Rosamilia J.M. Etching of silicon by the RCA standard clean 1 // Electrochem. and Solid-State Lett. 1999. V. 3. № 1. P. 47. https://doi.org/10.1149/1.1390954
14. Elshaari A.W., Zadeh I.E., Jöns K.D., et al. Thermo-optic characterization of silicon nitride resonators for cryogenic photonic circuits // IEEE Photonics J. 2016. V. 8. № 3. P. 1–9. https://doi.org/10.1109/JPHOT.2016.2561622
15. Венедиктов И.О., Ковалюк В.В., Ан П.П. и др. Исследование направленных ответвителей для реализации квантовых операций над кубитами // ЖТФ. 2023. Т. 93. № 7. С. 968–973.
https://doi.org/10.21883/JTF.2023.07.55755.80-23
Venediktov I.O., Kovalyuk V.V., An P.P., et al. Study of directional couplers for optical qubit quantum operations // Technical Physics. 2023. V. 68. № 7. P. 901–906.
http://doi.org/10.61011/TP.2023.07.56636.80-23
16. Zanatta A.R. The optical bandgap of lithium niobate (LiNbO3) and its dependence with temperature // Results in Physics. 2022. V. 39. P. 105736. https://doi.org/10.1016/j.rinp.2022.105736