ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-05-57-65

УДК: 528.526.6

Method for compensating the temperature influence on the error of a fiber-optic gyroscope with a birefringence modulator

For Russian citation (Opticheskii Zhurnal):
Кубланова И.Л., Шулепов В.А., Куликов А.В., Стригалев В.Е. Способ компенсации влияния температуры на погрешность волоконно-оптического гироскопа с модулятором двулучепреломления // Оптический журнал. 2025. Т. 92. № 5. С. 57–65. http://doi.org/10.17586/1023-5086-2025-92-05-57-65

  Kublanova I.L., Shulepov V.A., Kulikov A.V., Strigalev V.E. Method for compensating the temperature influence on the error of a fiber-optic gyroscope with a birefrin gence modulator [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 57–65. http://doi.org/10.17586/1023-5086-2025-92-05-57-65

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Methods to reduce the error of fiber-optic gyroscope with birefringence modulator during temperature changes. Aim of study. Development and experimental testing of a way to compensate the nonlinear impact of temperature on the error of a fiber-optic gyroscope with a birefringence modulator. Method. A method is proposed to reduce the temperature influence on the fiber optic gyroscope error by increasing the optical fiber length to values exceeding the depolarization length, which allows for reducing amplitude modulation of a signal caused by parasitic interference effects. Experimental studies were conducted on the influence of temperature changes and the rate of these changes on the fiber optic gyroscope error. Main results. The root mean square deviation of the signal decreased from 0.055 to 0.023 deg/hour within the temperature range of 16 to 36 °C and from 0.01 to 0.003 deg/hour under stable temperature conditions. Additionally, the signal drift decreased from 0.33 to 0.13 deg/hour in the specified temperature range and from 0.055 to 0.019 deg/hour under stable temperature conditions. Nonlinear segments in the angular velocity signals' dependence on temperature were eliminated. An additional time delay between wave trains with orthogonal polarization states is created to reduce the error of a fiber-optic gyroscope with a birefringence modulator. Practical significance. The method offers a means reduce the influence of temperature on the accuracy parameters of navigation systems.

Keywords:

fiber-optic gyroscope, birefringence modulator, lithium niobate, thermal compensation

Acknowledgements:

the authors are grateful to the staff of the Central Research Institute of Electropribor, namely to the deputy head of the 084th department A.A. Untiltov for the opportunity to conduct the tests and to engineer S.T. Neforosny for his assistance in conducting them. The research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (project № FSER-2024-0006)

OCIS codes: 060.2310, 060.2340

References:

1. Song N., Xu X., Zhang Z., et al. Advanced interferometric fiber optic gyroscope for inertial sensing: A review // J. Lightwave Technol. 2023. V. 41. № 13. P. 4023–4034. https://doi.org/10.1109/JLT.2023.3260839
2. Li A. IFOG based on rhombic optical path difference bias configuration for high-frequency angular vibration measurement // IEEE Sensors J. 2022. V. 22. № 17. P. 16892–16897. https://doi.org/10.1109/JSEN.2022.3190045
3. Cao Y., Ma X., Chen Y., et al. Interferometric fiber-optic gyroscope based on mode-division multiplexing // Opt. Lett. 2023. V. 48. P. № 11. P. 3067–3070. https://doi.org/10.1364/OL.494087
4. Драницына Е.В., Егоров Д.А., Унтилов А.А. Современное состояние разработок волоконно-оптических гироскопов и перспективы их развития // Гироскопия и навигация. 2023. Т. 31. № 4. C. 2–21.
 Dranitsyna E.V., Egorov D.A. & Untilov A.A. Current state and development prospects of fiber-optic gyroscopes // Gyroscopy and Navigation. 2023. V. 31. № 4. P. 2–21. https://doi.org/10.1134/S2075108724700019
5. Есипенко И.А., Лыков Д.А., Сметанников О.Ю. Применение трансверсально-изотропных характеристик контура для расчета параметров теплового дрейфа волоконно-оптического гироскопа // Оптический журнал. 2019. Т. 86. № 5. С. 36–44. http://doi.org/10.17586/1023-5086-2019-86-05-36-44
 Esipenko I.A., Lykov D.A., and Smetannikov O.Y. Using the transversely isotropic characteristics of the coil to calculate the thermal-drift parameters of a fiber-optic gyroscope // J. Opt. Technol. 2019. V. 86. № 5. P. 289. https://doi.org/10.1364/JOT.86.000289
6. Chen Y. Suppression of effects of temperature variation by high-order frequency modulation in large fiberoptic gyroscopes // Appl. Phys. Lett. 2023. V. 122. № 14. P. 1–6. https://doi.org/10.1063/5.0135848
7. Гонтарь Д.А., Драницына Е.В. Повышение эффективности компенсации температурной чувствительности волоконно-оптического гироскопа // Тез. докл. XXIX Санкт-Петербургская междунар. конф. по интегрированным навигационным системам. Санкт-Петербург, Россия. 30 мая — 1 июня 2022. С. 266–268.
 Gontar D.A., Dranitsyna E.V. Improving the efficiency of fiber-optic gyro temperature sensitivity compensation // 29th Saint Petersburg Intern. Conf. Integrated Navigation Systems (ICINS). Saint Petersburg, Russia. May 30 — June 01, 2022. P. 1–3. https://doi.org/10.23919/ICINS51784.2022.9815434
8. Chen Y., Zhu L., Wang W., et al. Fiber-optic gyroscopes with enhanced temperature adaptability for geophysical rotational sensing // EGU General Assembly. Vienna, Austria. April 14–19, 2024. EGU24-246, https://doi.org/10.5194/egusphere-egu24-246
9. Zhao S., Zhou Y., Shu X. Compensation of fiber optic gyroscope vibration error based on VMD and FPA-WT // Measurement Sci. and Technol. 2022. V. 33. № 11. P. 115104. https://doi.org/10.1088/1361-6501/ac7849
10. Cao Y., Ma X., Chen Y., et al. Interferometric fiber-optic gyroscope based on mode-division multiplexing // Opt. Lett. 2023. V. 48. № 11. P. 3067–3070. https://doi.org/10.1364/OL.494087
11. Lefevre H.C. The fiber-optic gyroscope. Artech house, 2022. 479 p.
12. Кубланова И.Л., Куликов А.В. Интерферометрический волоконно-оптический гироскоп с модулятором двулучепреломления // Тез. докл. 66-я Всерос. науч. конф. МФТИ. Москва, Россия. 1–6 апреля 2024. С. 348–349.
 Kublanova I.L., Kulikov A.V. Interferometric fiberoptic gyroscope with birefringence modulator [in Russian] // 66 All-Russian Sci. Conf. MIPT (Abstracts of reports). Moscow, Russia. April 1–6, 2024. P. 348–349.
13. Кубланова И.Л., Куликов А.В. Интерферометрический волоконно-оптический гироскоп // Патент РФ № RU2762530C1. 2021. Бюл. № 36.
Kublanova I.L., Kulikov A.V. Interferometric fiber-optic gyroscope // RF Patent № RU2762530C1. 2021. Bull. № 36. 

14. Кубланова И.Л., Шулепов В.А., Куликов А.В. Исследование интерферометрического волоконно-оптического гироскопа с модулятором двулучепреломления // Гироскопия и навигация. 2021. Т. 29. № 4. С. 134–142. https://doi.org/10.17285/0869-7035.0081
 Kublanova I.L., Shulepov V.A. & Kulikov A.V. Study of an interferometric fiber-optic gyroscope with a birefringence modulator // Gyroscopy and Navigation. 2021. V. 29. № 4. С. 134–142. https://doi.org/10.1134/S2075108721040052
15. Мешковский И.К., Стригалев В.Е., Тараканов С.А. Волоконно-оптический датчик тока // Патент РФ № RU2433414C1. 2011. Бюл. № 31.
 Meshkovky I.K., Strigalev V.E., Tarakanov S.A. Fiberoptic current sensor // RF Patent № RU2433414C1. 2011. Bull. № 31.
16. Wu J., Wang L. Temperature error compensation method of fiber optic gyroscope based on deep learning // J. Phys.: Conf. Ser. IOP Publ., 2024. V. 2724. № 1. P. 012031. https://doi.org/10.1088/1742-6596/2724/1/012031
17. Yan T., Su M., Huang L., et al. Temperature compensation for fiber optic gyroscope based on bayesian optimized relevance vector regression // 2023 3rd Intern. Conf. Electrical Eng. and Mechatronics Technol. (ICEEMT). Nanjing, China. July 21–23, 2023. P. 776–780. https://doi.org/10.1109/ICEEMT59522. 2023.10262994
18. Luo R., Li Y., Deng S., et al. Compensation of thermal strain induced polarization nonreciprocity in dualpolarization fiber optic gyroscope // Opt. Exp. 2017. V. 25. № 22. P. 26747–26759. https://doi.org/10.1364/OE.25.026747