DOI: 10.17586/1023-5086-2025-92-05-66-76
УДК: 535.324.1, 535.324.2, 535.321.9, 535.421
Device for measuring the refractive index of transparent liquids based on a sectoral diffractive sensor element
Full text on elibrary.ru
Белоусов Д.А. Устройство для измерения показателя преломления прозрачных жидкостей на основе секторального дифракционного сенсорного элемента // Оптический журнал. 2025. Т. 92. № 5. С. 66–76. http://doi.org/10.17586/1023-5086-2025-92-05-66-76
Belousov D.A. Device for measuring the refractive index of transparent liquids based on a sectoral diffractive sensor element [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 5. P. 66–76. http://doi.org/10.17586/1023-5086-2025-92-05-66-76
Subject of study. A device for measuring the refractive index of transparent liquids, the operating principle of which is based on the use of a sectoral diffractive sensor element. Aim of study. Development of a diffractometric device for measuring the RI of transparent liquids, in a wide range of changes in measured values, using a statically installed diffractive sensor element and a diffraction pattern recording unit. Method. Illumination of a diffractive grating immersed in the liquid under study with laser radiation and measurement of the angular position of the diffraction orders allows one to determine the refractive index of the liquid under study. To expand the range of measurable values without loss of accuracy, instead of a single diffractive grating, a sectoral diffractive sensor element developed in this work can be used, consisting of a set of diffractive gratings with different periods and angular orientations. Main results. A diffractometric device for measuring the refractive index of transparent liquids has been developed. Its special feature is the use of a sectoral diffractive sensor element consisting of four diffractive gratings with different periods and angular orientations. An experimental sample has been created, which allows measuring the refractive index of transparent liquids in the range of 1.3200–1.7200 at a wavelength of 639 nm. Practical significance. The concept of a diffractometric device for measuring the refractive index of transparent liquids proposed allows simplifying the design of devices of this type, reducing their cost, and also improving the speed and the accuracy of the measurements performed.
diffraction optics, refractive index, liquids, diffractive sensor, measuring system, image processing
Acknowledgements:the work was carried out with the support of the Foundation for Assistance to Small Innovative Enterprises within the framework of the «UMNIK» grant program, as well as using subsidies for financial support of the state task of the IA&E SB RAS (state registration № 124041700107-9) with application the equipment of the Central Research Center “Spectroscopy and Optics” of the IA&E SB RAS
OCIS codes: 120.4640, 050.1940, 050.1950
References:1. Khodier S.A. Refractive index of standard oils as a function of wavelength and temperature // Opt. Laser Technol. 2002. V. 34. № 2. P. 125–128. https://doi.org/10.1016/S0030-3992(01)00101-3
2. Liu P.Y., Chin L.K., Ser W., et al. Cell refractive index for cell biology and disease diagnosis: Past, present and future // Lab Chip. 2016. V. 16. № 4. P. 634–644. https://doi.org/10.1039/C5LC01445J
3. Oti W. Using refractometer to determine the sugar content in soft drinks commonly consumed in Abakaliki, Nigeria // IOSR J. Appl. Chem. 2016. V. 9. P. 89–91. https://doi.org/10.9790/5736-0907018991
4. Конопелько Л.А., Шур В.Л., Пинчук О.А. и др. Рефрактометрические методы в физико-химических измерениях. М.: Триумф, 2020. 208 с. https://doi.org/10.32986/978-5-907052-08-03-2020-208
Konopelko L.A., Shur V.L., Pinchuk O.A., et al. Methods of refractive index measurements in physical chemistry [in Russian]. Moscow: Triumph Publ., 2020. 208 p. https://doi.org/10.32986/978-5-907052-08-03-2020-208
5. Sobral H., Peña-Gomar M. Determination of the refractive index of glucose-ethanol-water mixtures using spectroscopic refractometry near the critical angle // Appl. Opt. 2015. V. 54. № 28. P. 8453–8458. https://doi.org/10.1364/AO.54.008453
6. Abbas B., Alshikh Khalil M. An experimental method for determination of the refractive index of liquid samples using Michelson interferometer // Acta. Phys. Pol. 2016. V. 129. № 1. P. 59–63. https://doi.org/10.12693/APhysPolA.129.59
7. Su B., Qi B., Zhang F., et al. Hybrid fiber interferometer sensor for simultaneous measurement of strain and temperature with refractive index insensitivity // Opt. Commun. 2022. V. 522. P. 128637. https://doi.org/10.1016/j.optcom.2022.128637
8. Zhang M., Hu Z., Wang X., et al. Power-type liquidlevel sensor for high refractive index liquid based on long-period fiber grating // Sens. Actuator A Phys. 2021. V. 324. P. 112652. https://doi.org/10.1016/j.sna.2021.112652
9. Li X., Wang C., Ma L., et al. Ellipsometry-transmission measurement of the complex refractive indices for a series of organic solvents in the 200–1700 nm spectral range // Infrared Phys. Technol. 2022. V. 125. P. 104313. https://doi.org/10.1016/j.infrared.2022.104313
10. Иоффе Б.В. Рефрактометрические методы химии. Л.: Химия, 1974. 343 с.
Yoffe B.V. Refractometric methods of chemistry [in Russian]. Leningrad: Himiya Publ., 1974. 343 p.
11. Plotnichenko V.G., Sokolov V.O. Influence of absorption on the refractive index determination accuracy by the minimum deviation method // Appl. Opt. 2018. V. 57. № 4. P. 639–647. https://doi.org/10.1364/AO.57.000639
12. Юрин А.И., Вишняков Г.Н., Минаев В.Л. Измерение показателя преломления с помощью гониометрической системы в автоматизированном режиме // Оптический журнал. 2022. Т. 89. № 12. С. 13–18. http://doi.org/10.17586/1023-5086-2022-89-12-13-18
Yurin A.I., Vishnyakov G.N., Minaev V.L. Measurement of the refractive index using a goniometric system in an automated mode // J. Opt. Technol. 2022. V. 89. № 12. P. 704–707. https://doi.org/10.1364/JOT. 89.000704
13. Lu S.H., Pan S.P., Liu T.S., et al. Liquid refractometer based on immersion diffractometry // Opt. Exp. 2007. V. 15. № 15. P. 9470–9475. https://doi.org/10.1364/ OE.15.009470
14. Hsu C.C., Liu T.S. Refractive index measurement using laser diffractometer // 2011 Fifth Intern. Conf. Sensing Technol. – IEEE. Palmerston North, New Zealand. November 28 – December 01, 2011. P. 370–375. https://doi.org/10.1109/ICSensT.2011.6137002
15. Liu C.W., Lee C.H., Ting C.J., et al. The measurement of the refractive index of transparent liquids by using holographic grating // Signal Recovery and Synthesis 2014. Seattle, Washington, United States. July 13–17, 2014. P. JTu4A. 20. https://doi.org/10.1364/AIO.2014. JTu4A.20
16. Durán-Ramírez V.M., Martínez-Ríos A., GuerreroViramontes J.A., et al. Measurement of the refractive index by using a rectangular cell with a fs-laser engraved diffraction grating inner wall // Opt. Exp. 2014. V. 22. № 24. P. 29899–29906. https://doi.org/10.1364/OE.22.029899
17. Barbosa E.A., Dib L.F.G. Diffractive refractometer for liquid characterization and transient processes monitoring // Rev. Sci. Instrum. 2017. V. 88. № 7. P. 073103. https://doi.org/10.1063/1.4994735
18. Dib L.F.G., Barbosa E.A. Immersed diffraction grating refractometers of liquids // Appl. Opt. 2016. V. 55. № 30. P. 8582–8588. https://doi.org/10.1364/ AO.55.008582
19. Вейко В.П., Корольков В. П., Полещук А. Г. и др. Лазерные технологии в микрооптике. Ч. 1. Изготовление дифракционных оптических элементов и фотошаблонов с амплитудным пропусканием // Автометрия. 2017. Т. 53. № 5. С. 66–77. http://doi.org/10.15372/ AUT20170507