ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-06-108-116

УДК: 535.39; 621.372; 537.876

Influence of the shape and orientation of nanoparticles on the spectral characteristics of composite media with gold inclusions

For Russian citation (Opticheskii Zhurnal):

Николаев Н.Э., Муратов Д.А., Чехлова Т.К., Копьева М.С. Влияние формы и ориентации наночастиц на спектральные характеристики композитных сред с включениями золота // Оптический журнал. 2025. Т. 92. № 6. С. 108–116. http://doi.org/10.17586/1023-5086-2025-92-06-108-116

 

Nikolaev N.E., Muratov D.A., Chekhlova T.K., Kopyova M.S. Influence of the shape and orientation of nanoparticles on the spectral characteristics of composite media with gold inclusions [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 6. P. 108–116. http://doi.org/10.17586/1023-5086-2025-92-06-108-116

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Spectral characteristics of absorption and transmission of composite media containing spherical and ellipsoidal gold nanoparticles. Aim of study. To establish the influence of particle shape, angle of incidence of radiation and light wave polarization on the spectral characteristics of the reflection and transmission coefficients of composite media with spherical and ellipsoidal gold nanoparticles. Method. The Maxwell Garnett effective medium model was used. Main results. Based on the modification of the Maxwell Garnett model taking into account the depolarization factor, an algorithm for calculating the spectral characteristics of the composite medium has been developed. The spectral dependences of the refractive index and extinction coefficient of a composite medium consisting of polystyrene and ellipsoidal gold nanoparticles were calculated. It is found that for particles of ellipsoidal shape, the orientation of the particles in the composite medium plays an essential role. It is shown that the amplitude of the extinction coefficient peak depends on the shape of the particles introduced into the dielectric matrix. The study of the spectral characteristics of the transmittance showed the presence of plasmon resonance absorption, the magnitude of which depended on the shape and orientation of the particles in the composite medium. A spectral shift of the plasmon resonance peak from 518 nm to 640 nm was observed when the shape of the nanoparticles changed. Practical significance. The research results make it possible to predict the optical properties of composite media containing nanoparticles of various shapes, which is important for choosing materials with desired properties in accordance with their purpose.

Keywords:

composite media, metal nanoparticles, spectral characteristics, plasmon resonance, Maxwell Garnett model, refractive index, extinction coefficient

OCIS codes: 160.4236, 160.4670, 160.4760, 310.3840

References:

1.    Климов В.В. Наноплазмоника. М.: Физматлит, 2009. 480 с.

       Klimov V.V. Nanoplasmonics [in Russian]. Moscow: Fizmatlit, 2009. 480 p.

2.   Дыкман Л.А., Хлебцов Н.Г. Биомедицинское применение многофункциональных золотых нанокомпозитов // Успехи биологической химии. 2016. Т. 56. С. 411–450.

       Dykman L.A., Khlebtsov N.G. Biomedical application of multifunctional gold nanocomposites [in Russian] // Advances in Biological Chemistry. 2016. V. 56. P. 411–450.

3.   Ремпель А.А., Валеева А.А. Наноструктурированный диоксид титана для медицинской химии // Известия академии наук. Серия химическая. 2019. № 12. С. 2163–2171.

       Rempel A.A., Valeeva A.A. Nanostructured Titanium Dioxide for medicinal chemistry // Russian Chemical Bulletin. 2019. V. 68. № 12. P. 2163–2171. https://doi.org/10.1007/s11172-019-2685-y

4.   Зайнуллина В.М., Жуков В.П. Электронная структура и оптические свойства анатаза, легированного висмутом и углеродом // Физика твердого тела. 2013. Т. 55. № 3. С. 534–541.

       Zainullina V.M., Zhukov V.P. Electronic structure and optical properties of Anatase doped with Bismuth and Carbon // Physics of the Solid State. 2013. V. 55. № 3. P. 589–597. https://doi.org/10.1134/S1063783413030347

5.   Daruich D. Souza C., Nogueira B.R., Rostelato M.E. Review of the methodologies used in the synthesis gold nanoparticles by chemical reduction // Journal of Alloys and Compounds. 2019. V. 798. P. 714–740. https://doi.org/10.1016/j.jallcom.2019.05.153

6.   Hammami I., Alabdallah N.M., Amjad Al Jomaa, Madiha Kamoun. Gold nanoparticles: Synthesis properties and applications // Journal of King Saud University — Science. 2021. V. 33. № 7. P. 101560. https://doi.org/10.1016/j.jksus.2021.101560

7.    Борен К., Хафмен Д. Поглощение и рассеяние света малыми частицами: Пер. с англ. М.: Мир, 1986. 664 с.

       Bohren C.F., Huffman D.R. Absorption and scattering of light by small particles. New York: John Wiley & Sons, 1983. 530 p.

8.   Kreibig U., Vollmer M. Optical properties of metal clusters. Berlin, Heidelberg: Springer-Verlag, 1995. 529 p.

9.   Оптика наноструктур / Под ред. А.В. Федорова. СПб.: Недра, 2005. 326 с.

       Optics of nanostructures [in Russian] / Ed. Fedorov A.V. St. Petersburg: Nedra Publ., 2005. 326 p.

10. Ibrahim K., Khalid S., Idrees K. Nanoparticles: Properties, applications and toxicities // Arabian Journal of Chemistry. 2019. V. 12. P. 908–931. https://doi.org/10.1016/j.arabjc.2017.05.011

11.  Хлебцов Н.Г. Оптика и биофотоника наночастиц с плазмонным резонансом // Квантовая электроника. 2008. Т. 38. № 6. С. 504–529.

       Khlebtsov N.G. Optics and biophotonics of nanoparticles with a plasmon resonance // Quantum Electronics. 2008. V. 38. № 6. P. 504–529. https://doi.org/10.1070/QE2008v038n06ABEH013829

12.  Dasgupta N., Ranjan S. Nanotechnology in food sector // An introduction to food grade nanoemulsions / Environmental Chemistry for a Sustainable World / Singapore: Springer, 2018. P. 1–18. https://doi.org/10.1007/978-981-10-6986-4_1

13.  Wiley B.J., Im S.H., Li Zhi-Yuan et al. Maneuvering the surface plasmon resonance of silver nanostructures through shape-controlled synthesis // J. Phys. Chem. B. 2006. V. 110. № 32. P. 15666–15675. https://doi.org/10.1021/jp0608628

14.  Indhu A.R., Keerthana L., Dharmalingam G. Plasmonic nanotechnology for photothermal applications — an evaluation // Beilstein J Nanotechnol. 2023. V. 14. P. 380–419. https://doi.org/10.3762/bjnano.14.33

15.  Pearce A.K., Wilks T.R., Arno M.C. et al. Synthesis and applications of anisotropic nanoparticles with precisely defined dimensions / Pearce A.K., Wilks T.R., Arno M.C., O’Reilly R.K. // Nature Reviews Chemistry. 2021. V. 45. № 5. P. 21. https://doi.org/10.1038/s41570-020-00232-7

16.  Sani A., Cao C., Cui D. Toxicity of gold nanoparticles (AuNPs): A review // Biochemistry and Biophysics Reports. 2021. V. 26. P. 100991. https://doi.org/10.1016/j.bbrep.2021.100991

17.  Hussein G., Al Barazanchi A., Mohammed F.S. Numerical investigation of the plasmonic performance of Ag and Au nanorods // AIP Conference Proceedings. 2020. V. 2290. P. 050057. https://doi.org/10.1063/5.0028990

18. Sharma P.K., Dorlikar S., Rawat P. et al. Nanotechnology and its application: a review // Nanotechnology in Cancer Management. Amsterdam, Oxford, Cambridge: Elsevier, 2021. P. 1–33. https://doi.org/10.1016/B978-0-12-818154-6.00010-X

19.  Головань Л.А., Тимошенко В.Ю., Кашкаров П.К. Оптические свойства нанокомпозитов на основе пористых систем // Успехи физических наук. 2007. Т. 177. № 6. С. 619–638.

       Golovan L.A., Timoshenko V.Yu., Kashkarov P.K. Optical properties of porous-system-based nanocomposites // Physics–Uspekhi. 2007. V. 50. № 6. P. 595–612. https://doi.org/10.1070/PU2007v050n06ABEH006257

20. Maxwell-Garnett J.C. Colors in metal glasses and in metallic films // Phil. Trans. R. Soc. Lond. A. 1904. V. 203. P. 385–420.

21.  Sipe J.E., Boyd R.W. Nanocomposite materials for nonlinear optics based on local field effects / Sipe J.E., Boyd R.W. // Topics Appl. Phys. 2002. V. 82. P. 1–19. https://doi.org/10.1007/3-540-44948-5_1

22. Bruggeman D.A.G. Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. I. Dielektrizitätskonstanten und Leitfähigkeiten der Mischkörper aus isotropen Substanzen // Annalen der physik. 1935. V. 416. № 7. P. 636–664.

23. Борн М., Вольф Э. Основы оптики. Перевод с англ. Бреуса С.Н., Головашкина А.И., Шубина А.А. / Под ред. Мотулевич Г.П. М.: Наука, 1973. 720 с.

       Born M., Wolf E. Principles of optics. London, N.Y., Paris: Pergamon Press Publ., 1970. 808 p.

24. Grand J., Adam P.-M., Grimault A.S., Vial A., Lamy de la Chapelle M., Bi-jeon J.-L., Kostcheev S., Royer P. Optical extinction spectroscopy of oblate, prolate and ellipsoid shaped gold nanoparticles: experiments and theory // Plasmonics. 2006. V. 1. № 2–4. P. 135–140. https://doi.org/10.1007/s11468-006-9014-7

25. Grand J., Lamy de la Chapelle M., Bijeon J.-L., Adam P.-M., Vial A., Royer P. Role of localized surface plasmons in surface-enhanced Raman scattering of shape-controlled metallic particles in regular arrays // Physical Review B. 2005. V. 72. № 3. P. 033407. https://doi.org/10.1103/PhysRevB.72.033407

26. Gotschy W., Vonmetz K., Leitner A., Aussenegg F.R. Thin films by regular patterns of metal nanoparticles: Tailoring the optical properties by nanodesign // Appl. Phys. B. 1996. V. 63. P. 381–384. https://doi.org/10.1007/BF01828742

27. Карпов С.В. Оптические эффекты в металлических наноколлоидах // Фотоника. 2012. № 2 (32). С. 4–51.

       Karpov S. Optical effects of metallic nanocolloidal materials [in Russian] // Photonics Russia. 2012. № 2 (32). P. 4–51.

28. Chepkasov V.S., Baidyshev V.S., Golubnichiy A.A. et al. / Chepkasov I.V., Baidyshev V.S., Golubnichiy A.A., Zamulin I.S., Kvashnin A.G., Kozlov S.M. / Cu-Au nanoparticles produced by the aggregation of gas-phase metal atoms for co oxidation // Aggregate. 2022. V. 3. № 6. P. e273. https://doi.org/10.1002/agt2.273

  1. Кручек В.А. Методика диагностирования дизельных двигателей автомобильной техники по параметрам акустического сигнала / Под ред. В.А. Кручек, А.А. Горбачев, Р.А. Иванов // Известия Петербургского университета путей сообщения. 2021. Т. 18. № 4. С. 571–577. https://doi.org/10.20295/1815-588X-2021-4-571-577

       Kruchek V.A., Gorbachev A.A., Ivanov R.A. Methods of diagnosing diesel engines of automotive equipment according to acoustic signal parameters // Izvestia of the St. Petersburg University of Railway Engineering. 2021. V. 18. № 4. P. 571–577. https: //doi.org/10.20295/1815-588X-2021-4-571-577