ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-06-3-13

УДК: 535.8 004.387

On the holographic implementation of quantum-like cognitive models

For Russian citation (Opticheskii Zhurnal):

Павлов А.В. К вопросу голографической реализации квантово-подобных моделей обработки информации // Оптический журнал. 2025. Т. 92. № 6. С. 3–13. http://doi.org/10.17586/1023-5086-2025-92-06-3-13

 

Pavlov A.V. On the holographic implementation of quantum-like cognitive models [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 6. P. 3–13. http://doi.org/10.17586/1023-5086-2025-92-06-3-13

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. 4f Fourier-holography scheme and the Grosseberg’s Instar neural network are considered in the framework of quantum-like cognitive models. Aim of study is an analytical description of the holographic scheme matched with the quantum-like models’ mathematical apparatus. Method. Analytical modeling and numerical simulation are used under representation of the processed information by realizations of a homogeneous isotropic random field. Main results. It is shown that holographic setup with nonlinear phase conjugating in the correlation plane can be some analogue of a quantum system only in terms of parallel processing and selection from super-position. However, the choice is not random, but is determined by the nonlinear transfer function of the phase-conjugating mirror. The shift invariance provided by a thin Fourier hologram adds the ability to make decision as the superposition, described by the linear prediction model; the last is considered by some authors as one of the possible mechanisms of the intuition phenomenon. Practical significance. For the classical holographic simulators of quantum processors and computers to be created their analytical description are to be matched with the used in quantum-like cognitive models’ mathematical formalism of quantum mechanics.

Keywords:

Fourier-holography, superimposed holograms, phase conjugating, density matrix, non-linearity, neural networks, quantum-like models, information processing, choice from alternatives, decision making, linear prediction

OCIS codes: 090.0090, 200.3050, 200.4260,200,4490, 070.4560

References:

1.    Ораевский А.Н. О квантовых компьютерах // Квантовая электроника. 2000. Т. 30. № 5. C. 457–458. https://www.mathnet.ru/rus/qe1742

       Oraevsky A.N. On quantum computers // Quantum Electronics. 2000. V. 30. № 5. P. 457–458. https://doi.org/10.1070/QE2000v030n05ABEH001742

2.   Ораевский А.Н. Квантовый компьютер? Когерентный компьютер! // Оптика и спектроскопия. 2001. Т. 91 № 3. С. 467–470.

       Oraevsky A.N. Quantum computers?... Coherent computers! // Optics and Spectroscopy. 2001. V. 91. № 3. P. 438441. https://doi.org/10.1134/1.1405225

3.   Peruš M. Neural Networks as a basis for quantum associative networks // Neural network world. 2000. V. 10. P. 1001–1013.

4.   Feinman R.P. The theory of positrons // Physical Review. 1949. V. 76. P. 749. https://doi.org/10.1103/PhysRev.76.749

5.   Loo C.K., Peruš M., Bischof H. Object recognition using quantum holography with neural-net preprocessing // Journal of Optical Technology. 2005. V. 72. № 5. P. 358–363. https://doi.org/10.1364/JOT.72.000358

6.   Ishikawa S. Fuzzy inferences by algebraic method // Fuzzy Sets and Systems. 1997. V. 87. № 2. P. 181–200. https://doi.org/10.1016/S0165-0114(96)00035-8

7.    Ishikawa S. A quantum mechanical approach to a fuzzy theory // Fuzzy Sets and Systems. 1997. V. 90. № 3. P. 277–306. https://doi.org/ 10.1016/S0165-0114(96)00114-5

8.   Ishikawa S. Fuzzy logic in measurements // Fuzzy Sets and Systems. 1998. V. 100. № 1–3. P. 291–300. https://doi.org/10.1016/S0165-0114(97)00154-1

9.   Busemeyer J.R., Pothos E.M., Franco R., Trueblood J.S. A quantum theoretical explanation for probability judgment “errors” // Psychological Review. 2011. V. 118. № 2. P. 193–218. https://doi.org/10.1037/a0022542

10. Khrennikov A. Quantum-like modeling of cognition // Frontiers in Physics. 2015. V. 3. P. 77. https://doi.org/10.3389/fphy.2015.00077

11.  Adams B., Petruccione F. Quantum effects in the brain: a review // AVS Quantum Sci. 2020. V. 2. № 022901. https://doi.org/10.1116/1.5135170

12.  Менский М.Б. Концепция сознания в контексте квантовой механики // Успехи физических наук. 2005. Т. 175. № 4. С. 413–435. https://doi.org/10.3367/UFNr.0175.200504c.0413

       Menskii M.B. Concept of consciousness in the context of quantum mechanics // Physics — Uspekhi. 2005. V. 48. № 4. P. 389–409. https://doi.org/10.1070/PU2005v048n04ABEH002075

13.  Желтиков А.М. Критика квантового разума: измерение, сознание, отложенный выбор и утраченная когерентность // Успехи физических наук. 2018. Т. 81. № 10. С. 1119–1128. https://doi.org/10.3367/UFNr.2017.06.038155

       Zheltikov A.M. The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherence // Physics — Uspekhi. 2018. V. 61. № 10. P. 1016–1025. https://doi.org/10.3367/UFNe.2017.06.038155

14.  Busemeyer J.R., Fakhari P., Kvam P. Neural implementation of operations used in quantum cognition // Progress in Biophysics and Molecular Biology. 2017. V. 130. P. 53–60. https://doi.org/10.1016/j.pbiomolbio.2017.04.007

15.  Павлов А.В., Орлов В.В. Моделирование механизмов квантовой логики методом наложенных голограмм Фурье, основанным на нелинейности экспозиционных характеристик голографических регистрирующих сред // Квантовая электроника. 2019. Т. 49. № 3. С. 246–252. https://doi.org/10.1070/qe16996

       Pavlov A.V., Orlov V.V. Modelling the mechanisms of quantum logic using the method of superimposed Fourier holograms based on the nonlinearity of the exposure characteristics of holographic recording media // Quantum Electronics. 2019. V. 49. № 3. P. 246–52. https://doi.org/10.1070/QEL16748

16.  Павлов А.В. Моделирование квантово-подобных когнитивных феноменов методом голографии Фурье: задача выбора альтернатив // Компьютерная оптика. 2021. Т. 45. № 4. С. 551–561. https://doi.org/10.18287/2412-6179-CO-830.

       Pavlov A.V. Modeling of quantum-like cognitive phenomena by the Fourier-holography technique under the choice of alternatives // Computer Optics. 2021. V. 45. № 4. P. 551–561. https://doi.org/10.18287/2412-6179-CO-830

      

17.  Павлов А.В., Гаугель А.О. Моделирование методом голографии Фурье ментальных особенностей лица, принимающего решение // Компьютерная оптика. 2023. Т. 47. № 3. С. 398–406. https://doi.org/10.18287/2412-6179-CO-1189

         Pavlov A.V., Gaugel A.O. Modeling mental peculiarities of a decision maker by a Fourier holography technique // Computer Optics. 2023. V. 47. № 3. P. 398–406. https://doi.org/10.18287/2412-6179-CO-1189

18.    Grimmett G.R., Stirzaker D.R. Probability and random processes. Third ed. NY: Oxford University Press Inc., 2001. 596 p.

19. Менский М.Б. Интуиция и квантовый подход к теории сознания // Вопросы философии. 2015. № 4. С. 48–57. https://pq.iphras.ru/article/view/4168 https://www.elibrary.ru/download/elibrary_23324927_23516976.pdf

       Mensky M.B. Intuition and the quantum approach to the theory of consciousness // Social Sciences. 2015. V. 46. № 2. P. 65–77. https://on-demand.eastview.com/browse/doc/46304669

20.  Born M. Zur Quantenmechanik der Stoßvorgänge // Zeitschrift für Physik. 1926. V. 37. №12. P. 863–867. https://doi.org/10.1007/BF01397477 (in German); English translation: On the quantum mechanics of collisions, in Quantum theory and measurement, section I.2. / J.A. Wheeler and W.H. Zurek, eds. Princeton, New Jersey: Princeton University Press, 1983. 839 p.