DOI: 10.17586/1023-5086-2025-92-06-3-13
УДК: 535.8 004.387
On the holographic implementation of quantum-like cognitive models
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Павлов А.В. К вопросу голографической реализации квантово-подобных моделей обработки информации // Оптический журнал. 2025. Т. 92. № 6. С. 3–13. http://doi.org/10.17586/1023-5086-2025-92-06-3-13
Pavlov A.V. On the holographic implementation of quantum-like cognitive models [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 6. P. 3–13. http://doi.org/10.17586/1023-5086-2025-92-06-3-13
Subject of study. 4f Fourier-holography scheme and the Grosseberg’s Instar neural network are considered in the framework of quantum-like cognitive models. Aim of study is an analytical description of the holographic scheme matched with the quantum-like models’ mathematical apparatus. Method. Analytical modeling and numerical simulation are used under representation of the processed information by realizations of a homogeneous isotropic random field. Main results. It is shown that holographic setup with nonlinear phase conjugating in the correlation plane can be some analogue of a quantum system only in terms of parallel processing and selection from super-position. However, the choice is not random, but is determined by the nonlinear transfer function of the phase-conjugating mirror. The shift invariance provided by a thin Fourier hologram adds the ability to make decision as the superposition, described by the linear prediction model; the last is considered by some authors as one of the possible mechanisms of the intuition phenomenon. Practical significance. For the classical holographic simulators of quantum processors and computers to be created their analytical description are to be matched with the used in quantum-like cognitive models’ mathematical formalism of quantum mechanics.
Fourier-holography, superimposed holograms, phase conjugating, density matrix, non-linearity, neural networks, quantum-like models, information processing, choice from alternatives, decision making, linear prediction
OCIS codes: 090.0090, 200.3050, 200.4260,200,4490, 070.4560
References:1. Ораевский А.Н. О квантовых компьютерах // Квантовая электроника. 2000. Т. 30. № 5. C. 457–458. https://www.mathnet.ru/rus/qe1742
Oraevsky A.N. On quantum computers // Quantum Electronics. 2000. V. 30. № 5. P. 457–458. https://doi.org/10.1070/QE2000v030n05ABEH001742
2. Ораевский А.Н. Квантовый компьютер? Когерентный компьютер! // Оптика и спектроскопия. 2001. Т. 91 № 3. С. 467–470.
Oraevsky A.N. Quantum computers?... Coherent computers! // Optics and Spectroscopy. 2001. V. 91. № 3. P. 438441. https://doi.org/10.1134/1.1405225
3. Peruš M. Neural Networks as a basis for quantum associative networks // Neural network world. 2000. V. 10. P. 1001–1013.
4. Feinman R.P. The theory of positrons // Physical Review. 1949. V. 76. P. 749. https://doi.org/10.1103/PhysRev.76.749
5. Loo C.K., Peruš M., Bischof H. Object recognition using quantum holography with neural-net preprocessing // Journal of Optical Technology. 2005. V. 72. № 5. P. 358–363. https://doi.org/10.1364/JOT.72.000358
6. Ishikawa S. Fuzzy inferences by algebraic method // Fuzzy Sets and Systems. 1997. V. 87. № 2. P. 181–200. https://doi.org/10.1016/S0165-0114(96)00035-8
7. Ishikawa S. A quantum mechanical approach to a fuzzy theory // Fuzzy Sets and Systems. 1997. V. 90. № 3. P. 277–306. https://doi.org/ 10.1016/S0165-0114(96)00114-5
8. Ishikawa S. Fuzzy logic in measurements // Fuzzy Sets and Systems. 1998. V. 100. № 1–3. P. 291–300. https://doi.org/10.1016/S0165-0114(97)00154-1
9. Busemeyer J.R., Pothos E.M., Franco R., Trueblood J.S. A quantum theoretical explanation for probability judgment “errors” // Psychological Review. 2011. V. 118. № 2. P. 193–218. https://doi.org/10.1037/a0022542
10. Khrennikov A. Quantum-like modeling of cognition // Frontiers in Physics. 2015. V. 3. P. 77. https://doi.org/10.3389/fphy.2015.00077
11. Adams B., Petruccione F. Quantum effects in the brain: a review // AVS Quantum Sci. 2020. V. 2. № 022901. https://doi.org/10.1116/1.5135170
12. Менский М.Б. Концепция сознания в контексте квантовой механики // Успехи физических наук. 2005. Т. 175. № 4. С. 413–435. https://doi.org/10.3367/UFNr.0175.200504c.0413
Menskii M.B. Concept of consciousness in the context of quantum mechanics // Physics — Uspekhi. 2005. V. 48. № 4. P. 389–409. https://doi.org/10.1070/PU2005v048n04ABEH002075
13. Желтиков А.М. Критика квантового разума: измерение, сознание, отложенный выбор и утраченная когерентность // Успехи физических наук. 2018. Т. 81. № 10. С. 1119–1128. https://doi.org/10.3367/UFNr.2017.06.038155
Zheltikov A.M. The critique of quantum mind: measurement, consciousness, delayed choice, and lost coherence // Physics — Uspekhi. 2018. V. 61. № 10. P. 1016–1025. https://doi.org/10.3367/UFNe.2017.06.038155
14. Busemeyer J.R., Fakhari P., Kvam P. Neural implementation of operations used in quantum cognition // Progress in Biophysics and Molecular Biology. 2017. V. 130. P. 53–60. https://doi.org/10.1016/j.pbiomolbio.2017.04.007
15. Павлов А.В., Орлов В.В. Моделирование механизмов квантовой логики методом наложенных голограмм Фурье, основанным на нелинейности экспозиционных характеристик голографических регистрирующих сред // Квантовая электроника. 2019. Т. 49. № 3. С. 246–252. https://doi.org/10.1070/qe16996
Pavlov A.V., Orlov V.V. Modelling the mechanisms of quantum logic using the method of superimposed Fourier holograms based on the nonlinearity of the exposure characteristics of holographic recording media // Quantum Electronics. 2019. V. 49. № 3. P. 246–52. https://doi.org/10.1070/QEL16748
16. Павлов А.В. Моделирование квантово-подобных когнитивных феноменов методом голографии Фурье: задача выбора альтернатив // Компьютерная оптика. 2021. Т. 45. № 4. С. 551–561. https://doi.org/10.18287/2412-6179-CO-830.
Pavlov A.V. Modeling of quantum-like cognitive phenomena by the Fourier-holography technique under the choice of alternatives // Computer Optics. 2021. V. 45. № 4. P. 551–561. https://doi.org/10.18287/2412-6179-CO-830
17. Павлов А.В., Гаугель А.О. Моделирование методом голографии Фурье ментальных особенностей лица, принимающего решение // Компьютерная оптика. 2023. Т. 47. № 3. С. 398–406. https://doi.org/10.18287/2412-6179-CO-1189
Pavlov A.V., Gaugel A.O. Modeling mental peculiarities of a decision maker by a Fourier holography technique // Computer Optics. 2023. V. 47. № 3. P. 398–406. https://doi.org/10.18287/2412-6179-CO-1189
18. Grimmett G.R., Stirzaker D.R. Probability and random processes. Third ed. NY: Oxford University Press Inc., 2001. 596 p.
19. Менский М.Б. Интуиция и квантовый подход к теории сознания // Вопросы философии. 2015. № 4. С. 48–57. https://pq.iphras.ru/article/view/4168 https://www.elibrary.ru/download/elibrary_23324927_23516976.pdf
Mensky M.B. Intuition and the quantum approach to the theory of consciousness // Social Sciences. 2015. V. 46. № 2. P. 65–77. https://on-demand.eastview.com/browse/doc/46304669
20. Born M. Zur Quantenmechanik der Stoßvorgänge // Zeitschrift für Physik. 1926. V. 37. №12. P. 863–867. https://doi.org/10.1007/BF01397477 (in German); English translation: On the quantum mechanics of collisions, in Quantum theory and measurement, section I.2. / J.A. Wheeler and W.H. Zurek, eds. Princeton, New Jersey: Princeton University Press, 1983. 839 p.
ru