ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-06-66-76

УДК: 535.36

High-performance method for the simulation of laser range profile with the use of the mechanism of the graphics processing unit rasterization

For Russian citation (Opticheskii Zhurnal):

Альес М.Ю., Шелковников Е.Ю., Шляхтин К.А. Высокопроизводительный метод моделирования дальностного портрета с применением механизма растеризации графического процессора // Оптический журнал. 2025. Т. 92. № 6. С. 66–76. http://doi.org/10.17586/1023-5086-2025-92-06-66-76

 

Alies M.Yu., Shelkovnikov E.Yu., Shlyahtin K.A. High-performance method for the simulation of laser range profile with the use of the mechanism of the graphics processing unit rasterization [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 6. P. 66–76. http://doi.org/10.17586/1023-5086-2025-92-06-66-76

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Laser range profile formed by the reflection of the pulse of laser radiation from the object in a lidar system. Aim of study. Development of the method for simulation of laser range profiles of objects. Method. To determine the laser range profile of a three-dimensional scene, it is proposed to split the surfaces of the scene objects into surface elements which are projected to the pixels of the screen with the use of the standard mechanism of the graphics processing unit rasterization. For each surface element a pixel shader calculates the impulse response. By constructing a weighted histogram, the impulse response of the scene is determined. The laser range profile of the scene is calculated by convolution of the impulse response of the scene with the impulse response of the lidar system. Main results. A mathematical model of the laser range profile obtained by lidar system is developed. A method is proposed for computing the laser range profile of a scene consisting of 3D-objects using the mechanism of the graphics processing unit rasterization. The algorithm of the program that performs this computation is described. The model adequacy has been verified by comparing the computation results with the data acquired by other authors. Practical significance. The use of the method offers a promising potential for the simulation of the laser range profiles of complex scenes, permits to study the operation of lidars in various conditions, to develop the algorithms for the processing of scanning results and to create a data base for the implementation of the machine learning techniques for object recognition with the use of laser range profile.

Keywords:

laser range profile, mathematical model, lidar, simulation, reflection, rasterization

OCIS codes: 100.2960, 140.3538, 280.3640, 290.1350

References:

1.    Козинцев В.И., Белов М.Л., Орлов В.М. и др. Основы импульсной лазерной локации: учебное пособие / Под ред. Рождествина В.Н. М.: МГТУ им. Н.Э. Баумана, 2010. 573 с.

       Kozintsev V.I., Belov M.L., Orlov V.M. et al. Basics of pulsed laser location: textbook [in Russian] / Ed. Rozhdestvin V.N. Moscow: BMSTU, 2010. 573 p.

2.   Баулин Ф.Б., Бурый Е.В. Проблемы формирования систем, обеспечивающих автоматическое распознавание объектов по дальностным портретам // Компьютерная оптика. 2019. Т. 43. № 1. С. 5–13. https://doi.org/10.18287/2412-6179-2019-43-1-5-13

       Baulin F.B., Buryi E.V. Issues of recognition system synthesis based on laser range profiles [in Russian] // Computer Optics. 2019. V. 43. № 1. P. 5–13. https://doi.org/10.18287/2412-6179-2019-43-1-5-13

3.   Van den Heuvel J.C., Bekman H.H.P.Th., van Putten F.J.M. et al. Search-lidar demonstrator for detection of small sea-surface targets // Proceedings of SPIE. 2008. V. 6950. P. 69500W-1–69500W-11. https://doi.org/10.1117/12.777947

4.   Van den Heuvel J.C., Pace P., Bekman H.H.P.Th. et al. Experimental validation of ship identification with a laser range profiler // Proceedings of SPIE. 2008. V. 6950. P. 69500V-1–69500V-12. https://doi.org/10.1117/12.777944

5.   Kunz G.J., Bek¬man H.H.P.Th., Benoist K.W. et al. Detection of small targets in a marine environment using laser radar // Proceedings of SPIE. 2005. V. 5885. P. 58850F-1–58850F-12. https://doi.org/10.1117/12.614914

6.   Schoemaker R.M., Benoist K. Characterisation of small targets in a maritime environment by means of laser range profiling // Proceedings of SPIE. 2011. V. 8037. P. 803705-1–803705-12. https://doi.org/10.1117/12.884575

7.    Steinvall O., Tulldahl M. Laser range profiling for small target recognition // Optical Engineering. 2016. V. 56. № 3. P. 031206-1–031206-16. https://doi.org/10.1117/1.OE.56.3.031206

8.   Van den Heuvel J.C., Schoemaker R.M., Schleijpen R.H.M.A. Identification of air and sea-surface targets with a laser range profiler // Proceedings of SPIE. 2009. V. 7323. P. 73230Y-1 – 73230Y-12. https://doi.org/10.1117/12.818426

9.   Лабунец Л.В., Борзов А.Б., Ахметов И.М. Модели реального времени импульсных отражательных характеристик 3D объектов в однопозиционной системе лазерной локации // Оптический журнал. 2020. Т. 87. № 9. С. 12–23. http://doi.org/10.17586/1023-5086-2020-87-09-12-23

       Labunets L.V., Borzov A.B., Akhmetov I.M. Real-time models of pulsed reflectance profiles of 3D objects in a monostatic laser location system // Journal of Optical Technology. 2020. V. 87. № 9. P. 513–520. https://doi.org/10.1364/JOT.87.000513

10. Лабунец Л.В., Борзов А.Б., Ахметов И.М. Распознавание 3D объектов в однопозиционной системе лазерной локации методами интеллектуального анализа импульсных отражательных характеристик // Оптический журнал. 2022. Т. 89. № 4. С. 40–51. http://doi.org/ 10.17586/1023-5086-2022-89-04-40-51

       Labunets L.V., Borzov A.B, Akhmetov I.M. Recognition of 3d objects in a monostatic laser location system via intelligent analysis of pulsed reflectance profiles // Journal of Optical Technology. 2022. V. 89. № 4. P. 217–224. https://doi.org/10.1364/JOT.89.000217

11.  Jenn D.C. Radar and laser cross section engineering. Washington: American Institute of Aeronautics and Astronautics, 2005. 503 p.

12.  Боресков А.В. Программирование компьютерной графики. Современный OpenGL / М.: ДМК Пресс, 2019. 372 c.

       Boreskov A.V. Computer graphics programming. Modern OpenGL [in Russian] / Moscow: DMK Press, 2019. 372 p.

13.  Лабунец Л.В. Цифровые модели изображений целей и реализаций сигналов в оптических локационных системах: Учебное пособие. М.: Изд-во МГТУ им. Н.Э. Баумана, 2007. 216 c.

       Labunets L.V. Digital models of target images and signal realizations in optical localization systems: Textbook. Moscow: BMSTU, 2007. 216 p.

14.  Hao, Q., Cheng Y., Cao J. et al. Analytical and numerical approaches to study echo laser pulse profile affected by target and atmospheric turbulence // Optics Express. 2016. V. 24. № 22. P. 25026–25042. http://doi.org/10.1364/OE.24.025026

15.  Torrance K.E., Sparrow E.M. Theory for off-specular reflection from roughened surfaces // Journal of the Optical Society of America. 1967. V. 57. № 9. P. 1105–1114. http://doi.org/10.1364/JOSA.57.001105

16.  Chevalier T. A ray tracing based model for 3D ladar systems // Proceedings of the International Conference on Computer Graphics Theory and Applications. 2011. P. 39–48. http://doi.org/10.5220/0003322700390048

17.  Steinvall O. Effects of target shape and reflection on laser radar cross sections // Applied Optics. 2000. V. 39. № 24. P. 4381–4391. http://doi.org/10.1364/AO.39.004381

18. Steinvall O., Carlsson T. Three-dimensional laser radar modelling // Proceedings of SPIE. 2001. V. 4377. P. 23–34. http://doi.org/10.1117/12.440110

19.  Лебедько Е.Г. Системы импульсной оптической локации: Учебное пособие. СПб.: Изд-во «Лань», 2014. 368 с.

       Lebedko E.G. Pulsed optical location systems: Textbook. St. Petersburg: Lan, 2014. 368 p.

20. Liao H., Li Y., Han C. et al. Laser range profile base on convolution of time domain // The 12th International Symposium on Antennas, Propagation and EM Theory. 2018. P. 1–4. http://doi.org/10.1109/ISAPE.2018.8634112

21.  Steinvall O., Sjöqvist L., Henriksson M. et al. High resolution ladar using time-correlated single-photon counting // Proceedings of SPIE. 2008. V. 6950. P. 695002-1–695002-13. http://doi.org/10.1117/12.778323

22. Qt 3D Overview | Qt 3D 5.15.3 [Электронный ресурс]. Режим доступа: https://doc.qt.io/qt-5/qt3d-overview.html, свободный (дата обращения 17.06.2024).

       Qt 3D Overview | Qt 3D 5.15.3 [Electronic resource]. Access mode: https://doc.qt.io/qt-5/qt3d-overview.html, free (accessed 06/17/2024).

23. Format — OpenGL Wiki. Source [Электронный ресурс]. Режим доступа: https://www.khronos.org/opengl/wiki/Image_Format, свободный (дата обращения 17.06.2024).

       Format — OpenGL Wiki. Source [Electronic resource]. Access mode: https://www.khronos.org/opengl/wiki/Image_Format, free (accessed 06/17/2024).

24. Gong Y., Wang M., Gong L. Laser range profile of spheres // Proceedings of SPIE. 2016. V. 9684. P. 96843S-1–96843S-5. http://doi.org/10.1117/12.2244569

25. Zhang H., Wang B. Three-dimensional laser radar range imagery of complex target with rough surfaces // Progress In Electromagnetics Research M. 2018. V. 73. P. 17–24. http://doi.org/10.2528/PIERM18050902

26. 3D модель Zeven Provincien — TurboSquid 590464 [Электронный ресурс]. Режим доступа: https://www.turbosquid.com/ru/3d-models/hnlms-zeven-max/590464, свободный (дата обращения 17.06.2024).

       Hnlms Zeven Max — TurboSquid 590464 [Electronic resource]. Access mode: https://www.turbosquid.com/3d-models/zeven-provincien-590464, free (accessed 06/17/2024).