DOI: 10.17586/1023-5086-2025-92-06-77-86
УДК: 520.16
Capabilities for detection of sunspot edges on Shack–Hartmann sensor images: application of the Canny method
Full text on elibrary.ru
Дрига М.Б., Шиховцев А.Ю., Ковадло П.Г. Возможности обнаружения краёв солнечных пятен по изображениям, полученным с помощью датчика Шэка–Гартмана: применение метода Кенни // Оптический журнал. 2025. Т. 92. № 6. С. 77–86. http://doi.org/10.17586/1023-5086-2025-92-06-77-86
Driga M.B., Shikhovtsev A.Yu., Kovadlo P.G. Capabilities for detection of sunspot edges on Shack–Hartmann sensor images: application of the Canny method [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 6. P. 77–86. http://doi.org/10.17586/1023-5086-2025-92-06-77-86
Study subject. Optical distortions on the telescope aperture are formed due to the atmospheric turbulence along the line of sight. The aim of this paper is to study the possibilities of using computer vision methods to determine the contours of sun-spots measured by the Shack–Hartmann sensor, as well as to develop approaches to estimate the shift of the solar image in the plane conjugate with the telescope aperture. Methods. The Canny method is used to determine the contours and amplitudes of the shift of the solar image of sunspot images recorded using the Shack–Hartmann sensor. The Fried parameter for the Large Solar Vacuum Telescope is estimated based on the variance of differential sunspot shifts calculated using the Canny edge detection method. Main results. The paper applies computer vision methods and algorithms to process subimages obtained using the Shack–Hartmann sensor. The proposed edge detection and estimating Fried parameter algorithms were adapted and applied to the Large Solar Vacuum Telescope. Practical significance. The computer vision methods developed in the work can be used in applications for adaptive optics systems, as well as for the improvment of measuring methods of atmospheric optical turbulence profiles.
adaptive optics system, Shack–Hartmann sensor, Canny method, optical turbulence, atmospheric distortions, computer vision
Acknowledgements:the study was supported by the grant of the Russian Science Foundation № 24-72-10043, https://rscf.ru/project/24-72-10043/. The results of measurements of the charac-teristics of optical distortions were obtained using the Unique Scientific Installation Large Solar Vacuum Telescope http://ckp-rf.ru/usu/200615/
OCIS codes: 280.4788, 010.1330
References:1. Rimmele Th.R., Marino J. Solar adaptive optics // Living Rev. Sol. Phys. 2011. V. 8. № 2. P. 1–92. https://doi.org/10.12942/lrsp-2011-2
2. Zhong L., Zhang L., Shi Z., Tian Y., Guo Y., Kong L., Rao X., Bao H., Zhu L., Rao C. Wide field-of-view, high-resolution Solar observation in combination with ground layer adaptive optics and speckle imaging // Astron. Astrophys. 2020. V. 637. A99. https://doi.org/10.1051/0004-6361/201935109
3. Антошкин Л.В., Ботыгина Н.Н., Больбасова Л.А., Емалеев О.Н., Коняев П.А., Копылов Е.А., Ковадло П.Г., Колобов Д.Ю., Кудряшов А.В., Лавринов В.В., Лавринова Л.Н., Лукин В.П., Чупраков С.А., Селин А.А., Шиховцев А.Ю. Адаптивная оптическая система для солнечного телескопа, обес-печивающая его работоспособность в условиях сильной атмосферной турбулентности // Оптика атмосф. и океана. 2016. Т. 29. № 11. С. 895–904. https://doi.org/10.15372/AOO20161101
Antoshkin L.V., Botygina N.N., Bolbasova L.A., Emaleev O.N., Konyaev P.A., Kopylov E.A., Kovadlo P.G., Kolobov D.Yu., Kudryashov A.V., Lavrinov V.V., Lavrinova L.N., Lukin V.P., Chuprakov S.A., Selin A.A., Shikhovtsev A.Yu. Adaptive optics system for solar telescope operating under strong atmospheric turbulence // Atmos. Ocean. Opt. 2017. V. 30. № 3. P. 291–299. https://doi.org/10.1134/S1024856017030034
4. Morris T. Tomographic adaptive optics and turbulence profiling // Journal of Physics: Conference Series. 2015. V. 595. P. 012021. https://doi.org/10.1088/1742-6596/595/1/012021
5. Butterley T., Wilson R.W., Sarazin M. Determination of the profile of atmospheric optical turbulence strength from SLODAR data //MNRAS. 2006. V. 36. I. 2. P. 835–845. https://doi.org/10.1111/j.1365-2966.2006.10337.x
6. Wilson R.W. SLODAR: Measuring optical turbulence altitude with a Shack–Hartmann wavefront sensor // Mon. Not. R. Astron. Soc. 2002. V. 337. № 1. P. 103–108. https://doi.org/10.1046/j.1365-8711.2002.05847.x
7. Osborn J., Butterley T., Föhring D., Wilson R. Characterising atmospheric optical turbulence using stereo-SCIDAR // J. Phys.: Conf. Ser. 2015. V. 595. P. 012022. https://doi.org/10.1088/1742-6596/595/1/012022
8. Potanin S.A., Kornilov M.V., Savvin A.D., Safonov B.S., Ibragimov M.A., Kopylov E.A., Nalivkin M.A., Shmagin V.E., Huy L.X., Thao N.T. A facility for the study of atmospheric parameters based on the Shack–Hartmann sensor // Astrophys. Bull. 2022. V. 77. № 2. P. 214–221. https://doi.org/10.1134/S1990341322020067
9. Wang Z., Zhang L., Kong L., Bao H., Guo Y., Rao X., Zhong L., Zhu L., Rao C. A modified S-DIMM+: applying additional height grids for characterizing daytime seeing profiles // Mon. Not. R. Astron. Soc. 2018. V. 478. № 2. P. 1459–1467.
10. Griffiths R., Osborn J., Farley O., Butterley T., Townson M.J., Wilson R. Demonstrating 24-hour continuous vertical monitoring of atmospheric optical turbulence // Optics Express. 2023. V. 31. I. 4. P. 6730–6740. https://doi.org/10.1364/OE.479544
11. Avila R., Aviles L., Wilson R.W., Chun M., Butterley T., Carrasco E. LO-LAS: an optical turbulence profiler in the atmospheric boundary layer with extreme altitude resolution // Monthly Notices of the Royal Astronomical Society. 2008. V. 387. I. 4. P. 1511–1516. https://doi.org/10.1111/j.1365-2966.2008.13386.x
12. Agrawal H., Desai K. Canny edge detection: a comprehensive review // International Journal of Technical Research & Science. 2024. IJTRS-ISET-24-023. P. 126–133. https://doi.org/0.30780/specialissue-ISET-2024/023
13. Manish T.I., Kumar T.G. Automatic detection of sunspot activities using advanced detection model // IOSR Journal of Computer Engineering. 2014. V. 16. № 2. P. 83– 87. https://doi.org/10.9790/0661-16288387
14. Canny John. A computational approach to edge detection // Pattern Analysis and Machine Intelligence. IEEE Transactions on. 1986. Т. PAMI–8. С. 679–698. https://doi.org/10.1109/TPAMI.1986.4767851
15. Документация OpenCV 4.x [Электронный ресурс] / docs.opencv.org. 2024. URL: https://docs.opencv.org/4.x/
OpenCV 4.x Documentation [Electronic resource] / docs.opencv.org. 2024. URL: https://docs.opencv.org/4.x/.
16. Документация SciKit-Image 0.23.x [Электронный ресурс] / scikit-image.org. 2024. URL: https://scikit-image.org/docs/0.23.x/
SciKit-Image 0.23.x Documentation [Electronic resource] / scikit-image.org. 2024. URL: https://scikit-image.org/docs/0.23.x/
17. Ботыгина Н.Н., Ковадло П.Г., Копылов Е.А., Лукин В.П., Туев М.В., Шиховцев А.Ю. Оценка качества астрономического видения в месте расположения Большого солнечного вакуумного телескопа по данным оптических и метеорологических измерений // Оптика атмосф. и океана. 2013. Т. 26. № 11. С. 942–947.
Botygina N.N., Kovadlo P.G., Kopylov E.A., Lukin V.P., Tuev M.V., Shikhovtsev A.Yu. Assessment of astronomical seeing quality at the site of the Large Solar Vacuum Telescope based on optical and meteorological measurements // Atmos. Ocean. Opt. 2013. V. 26. № 11. P. 942–947.
18. Shikhovtsev A.Yu. Reference optical turbulence characteristics at the Large Solar Vacuum Telescope site // Publications of the Astronomical Society of Japan. 2024. V. 76. I. 3. P. 538–549. https://doi.org/10.1093/pasj/psae031
ru