DOI: 10.17586/1023-5086-2025-92-06-87-96
УДК: 535.33:621.373:535
Acousto-optical spatial frequency filter with minimal acoustic power consumption
Full text on elibrary.ru
Котов В.М., Аверин С.В., Белоусова А.С., Карачевцева М.В., Булюк А.Н., Воронко А.И. Акустооптический фильтр пространственных частот с минимальным потреблением акустической мощности // Оптический журнал. 2025. Т. 92. № 6. С. 87–96. http://doi.org/10.17586/1023-5086-2025-92-06-87-96
Kotov V.M., Averin S.V., Belousova A.S., Karachevtseva M.V., Bulyuk A.N., Voronko A.I. Acousto-optical spatial frequency filter with minimal acoustic power consumption [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 6. P. 87–96. http://doi.org/10.17586/1023-5086-2025-92-06-87-96
Subject of the study. The energy capabilities of acousto-optic tangent geometry Bragg diffraction for two-dimensional optical Fourier processing of optical images are investigated. Aim of study. To develop an acousto-optic spatial frequency filter made of paratellurite TeO2 crystal that provides maximum resolution with minimum acoustic power consumption. Method. The method is based on the use of unique properties of paratellurite crystal, in particular, the anomalously low acoustic wave velocity. To increase the resolution, Bragg diffraction at a very low frequency is used. It turned out that diffraction at the minimum frequency is tangent geometry one. This makes it possible to best perform two-dimensional filtering of images during their optical Fourier processing. Thus, two goals are achieved simultaneously — maximum increase in the filter resolution and provision of the best conditions for two-dimensional image processing. Main results. An experimental model of the acousto-optic spatial frequency filter based on a paratellurite crystal has been developed and created, intended for two-dimensional processing of images transferred at a light wavelength of 633 nm. A two-dimensional image contour in the first diffraction order at a sound frequency of 9.9 MHz has been experimentally obtained. Practical significance. The developed filter allows processing two-dimensional images at a minimum sound frequency with minimally consumed acoustic power, while in combination with tangent geometry acousto-optic diffraction it becomes possible to perform operations on two-dimensional images with maximum resolution.
acousto-optic diffraction, Bragg regime, spatial frequency filter, two-dimensional optical image processing
Acknowledgements:OCIS codes: 070.1060, 070.2615, 070.6110
References:1. Пожар В.Э. Методы и средства спектрального оптического анализа // Оптический журнал. 2024. Т. 91. № 7. С. 3–4. http://doi.org/10.17586/1023-5086-2024-91-07-3-4
Pozhar V.E. Methods and tools for spectral optical analysis // Journal of Optical Technology. 2024. V. 91. № 7. P. 437–438. https://doi.org/10.1364/JOT.91.000437
2. Баландин И.А., Шарикова М.О., Батшев В.И., Варнавская Д.В., Козлов А.Б. Видеоспектрометр ближнего инфракрасного диапазона с использованием двойного акустооптического фильтра // Оптический журнал. 2024. Т. 91. № 7. С. 37–44. http://doi.org/10.17586/1023-5086-2024-91-07-37-44
Balandin I.A., Sharikova M.O., Batshev V.I., Varnavskaya D.V., Kozlov A.B. Short-wave infrared imaging spectrometer based on a tandem acousto-optical tunable filter // Journal of Optical Technology. 2024. V. 91. № 7. P. 459–463. https://doi.org/10.1364/JOT.91.000459
3. Сударев А.А., Польщикова О.В., Зотов К.В. Оптическая система для эффективной перестраиваемой акустооптической фильтрации неполяризованного излучения суперконтинуума // Оптический журнал. 2024. Т. 91. № 7. С. 80–88. http://doi.org/10.17586/1023-5086-2024-91-07-80-88
Sudarev A.A., Polschikova O.V., Zotov K.V. Optical system for efficient tunable acousto-optic filtering of unpolarized supercontinuum radiation // Journal of Optical Technology. 2024. V. 91(7). P. 485–489. https://doi.org/10.1364/JOT.91.000485
4. Batshev V.I., Pozhar V.E., Kananykhin O.A. Quality assessment of stereoscopic images under acousto-optic diffraction in paratellurite crystal // Journal of Optical Technology. 2024. V. 90 (11). P. 654–659. https://doi.org/10.1364/JOT.90.000654
5. Beliaeva A.S., Romanova G.E., Sharikova M.O. Estimation of color reproduction accuracy using a tunable source based on an acoustic-optical tunable filter // Journal of Optical Technology. 2024. V. 90. № 11. P. 660–666. https://doi.org/10.1364/JOT.90.000660
6. Balakshy V.I. Acousto-optic visualization of optical wave fronts [invited] // Appl. Optics. 2018. V. 57. № 10. P. C56–C63. https://doi.org/10.1364/AO.57.000C56
7. Porokhovnichenko D.L., Voloshinov V.B., Dyakonov E.A., Komandin G.A., Spektor I.E., Travkin V.D. Application potential of paratellurite and iodic acid crystals for acousto-optics in the Terahertz range // Physics of Wave Phenomena. 2017. V. 25. P. 114–118. https://doi.org/10.3103/S1541308X17020066
8. Балакший В.И., Парыгин В.Н., Чирков Л.Е. Физические основы акустооптики. М.: Радио и связь, 1985. 280 c.
Balakshy V.I., Parygin V.N., Chirkov L.E. Physical principles of acousto- optics. Moscow: “Radio i Svyaz” Publisher, 1985. 280 p.
9. Xu J., Stroud R. Acousto-optic devices: Principles, design and applications. NY.: John Wiley and Sons. Inc., 1992. 652 p.
10. Yablokova A.A., Machikhin A.S., Batshev V.I., Pozhar V.E., Boritko S.V. Analysis of transfer function dependence on configuration of acousto-optic interaction in uniaxial crystals // Proc. SPIE 2019. P. 11032: 1103215. https://doi.org/10.1117/12.2520803
11. Balakshy V.I., Voloshinov V.B., Babkina T.M., Kostyuk D.E. Optical image processing by means of acousto-optic spatial filtration // J. Modern Optics. 2005. V. 52. № 1. P. 1–20. https://doi.org/10.1080/09500340410001669408
12. Молчанов В.Я., Китаев Ю.И., Колесников А.И., Нарвер В.Н., Розенштейн А.З., Солодовников Н.П., Шаповаленко К.Г. Теория и практика современной акустооптики. М.: Изд. Дом МИСиС, 2015. 458 с.
Molchanov V.Ya., Kitaev Yu.I., Kolesnikov A.I., Narver V.N., Rozenshtein A.Z., Solodovnikov N.P., Shapovalenko K.G. Theory and practice of modern acoustooptics. Moscow: MISiS Publisher, 2015. 458 p.
13. Котов В.М., Аверин С.В., Карачевцева М.В., Яременко Н.Г. Акустооптический фильтр пространственных частот, оперирующий в промежуточной области акустооптического взаимодействия // Оптический журнал. 2022. Т. 91. № 1. С. 54–62. http://doi.org/10.17586/1023-5086-2022-89-01-54-62
Kotov V.M., Averin S.V., Karachevzeva M.V., Yaremenko N.G. Acousto-optic spatial frequency filter operating in the intermediate region of acousto-optic interaction // Journal of Optical Technology. 2022. V. 89(1). P. 38–43. https://doi.org/10.1364/JOT.89.000038
14. Балакший В.И. Акустооптическая ячейка как фильтр пространственных частот // Радиотехника и электроника. 1984. Т. 29. № 8. С. 1610–1616.
Balakshy V.I. Acousto-optic cell as a filter of spatial frequencies // Radiotechnika I Electronika. 1984. V. 29. № 8. P. 1610–1616.
15. Warner A.W., White D.L., Bonner W.A. Acoustooptic light deflectors using optical activity in paratellurite // J. Appl. Phys. 1972. V. 43. P. 4489–4495. https://doi.org/10.1063/1.1660950
16. Кизель В.А., Бурков В.И. Гиротропия кристаллов. М.: Наука, 1980. 304 с.
Kizel’ V.A., Burkov V.I. Gyrotropy of crystalls. Moscow: “Nauka” Publisher, 1980. 304 p.
17. Stark H. Applications of optical Fourier transforms. N.-Y.: Acad. Press, 1982. 535 p.
ru