ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-06-97-107

УДК: 535.317, 53.088.23

Test object image preprocessing for modulation transfer function calculation in the testing of optical systems

For Russian citation (Opticheskii Zhurnal):

Летова Е.Ю., Иванова Т.В., Завгородний Д.С. Предварительная обработка изображений тест-объектов для вычисления функции передачи модуляции при контроле оптических систем // Оптический журнал. 2025. Т. 92. № 6. С. 97–107. http://doi.org/10.17586/1023-5086-2025-92-06-97-107

 

Letova E.Yu., Ivanova T.V., Zavgorodniy D.S. Test object image preprocessing for modulation transfer function calculation in the testing of optical systems [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 6. P. 97–107. http://doi.org/10.17586/1023-5086-2025-92-06-97-107

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Preprocessing methods for slit and pinhole object images for the modulation transfer function calculation are discussed, and the method considering the finite size of the object in modulation transfer function calculation is shown. The influence of background and detector noise suppression and the scattering spot center calculation methods on the final error of the modulation transfer function is demonstrated. Aim of study. Data preprocessing (background and noise suppression, cropping and scattering spot center search) and modulation transfer function calculation using test objects images for the hardware-software complex of optical systems automated testing. Method. The preprocessing methods are analyzed using test object images taken with two lenses on the test bench. The modulation transfer function calculation error in cases of applying different preprocessing methods is considered the maximum absolute deviation from the reference graph obtained with another testing method or calculated theoretically when the tested lens was designed. Main results. The error analysis of the modulation transfer function calculation showed that the background correction, influenced by the noise rejection method, has the greatest effect on the calculation results. A median filter and the repetitive background subtraction method are suggested to suppress random noise and background illumination. Moreover, due to the necessity of object size corrections, it is proposed to divide the modulation transfer function by the object spectrum. Furthermore, the square mass center method is recommended to locate the scattering spot center, as it is required to be found with minimum error. Practical significance. The work results will raise the accuracy of control methods based on the test object images in optical fabrication, particularly in optical instruments quality assessment. In addition, the optical testing process complexity will be reduced, and the time spent on the optical systems assessment will be decreased.

Keywords:

digital image processing, noise filtration, background correction, scattering spot center, point spread function, line spread function, modulation transfer function, optical systems testing, optical system quality characteristics

OCIS codes: 100.2000, 110.3000, 110.4100

References:

1.    Miora R.H.D., Senftleben M., Abrahamsson S., Rohwer E., Heintzmann R., Bosman G. Experimental validation of numerical point spread function calculation including aberration estimation // Optics Express. 2024. № 12 (32). P. 21887–21908. https://doi.org/10.1364/OE.520400

2.   Xie X., Fan H., Wang H., Wang Z., Zou N. Error of the slanted edge method for measuring the modulation transfer function of imaging systems // Applied Optics. 2018. V. 57. № 7. P. B83–B91. https://doi.org/10.1364/AO.57.000B83

3.   Perezyabov O.A., Baranov A.N., Maltseva N.K., Linski A.V. Application for determining the modulation transfer function of the smartphone built-in camera // 2017 Progress In Electromagnetics Research Symposium – Spring (PIERS). St. Petersburg, Russia. May 22–25, 2017. P. 3804–3808.

4.   Оптический производственный контроль / Под ред. Д. Малакара. Пер. с англ. Е.В. Мазуровой и др. Под ред. А.Н. Соснова. М.: Машиностроение, 1985. 400 с.

       Optical shop testing. Ed. by Malacara D. New York, Chichester, Brisbane, Toronto: John Wiley & Sons, 1978. 523 p.

5.   Летова Е.Ю., Исламова Р.Р. Разработка программы для контроля качества оптической системы по зарегистрированному пятну рассеяния при помощи вычисления концентрации энергии и частотно-контрастной характеристики // Сборник трудов XI Конгресса молодых учёных. Санкт-Петербург, Россия. 04–08 апреля 2022. С. 637–640. EDN: FWZMSI

       Letova E., Islamova R. Program development for an optical system quality control based on the registered scattering spot via energy concentration and modulation transfer function calculation [in Russian] // Proceedings of the XI Congress of Young Scientists. St. Petersburg, Russia. April 04–08, 2022. P. 637–640. EDN: FWZMSI

6.   Летова Е. Разработка программы для анализа качества изображения и её интеграция в программно-аппаратный комплекс контроля оптических систем // Альманах научных работ молодых учёных Университета ИТМО. 2023. Т. 1. C. 223–226. EDN: NYVYWH

       Letova E. Image quality assessment program development and its integration into the hardware-software complex for optical systems control [in Russian] // Almanac of Scientific Papers of Young Scientists of ITMO University. 2023. V. 1. P. 223–226. EDN: NYVYWH

7.    ГОСТ Р58566—2019. Оптика и фотоника. Объективы для оптико-электронных систем. Методы испытаний. Введ. 27.09.19. М.: Стандартинформ, 2019. 28 с.

       GOST (Russian National Standard) R 58566—2019. Optics and photonics. Lenses for optoelectronic systems. Test methods [in Russian]. Introd. 27/09/19. Moscow: Standards Publ., 2019. 28 p.

8.   Родионов С.А. Автоматизация проектирования оптических систем. Л.: Машиностроение, 1982. 275 с.

       Rodionov S.A. Automation of optical systems design [in Russian]. Leningrad: Mashinostroenie, 1982. 275 p.

9.   Борн М., Вольф Э. Основы оптики / Перевод с англ. Бреуса С.Н., Головашкина А.И., Шубина А.А. / Под ред. Мотулевич Г.П. М.: Наука, 1973. 720 с.

       Born M., Wolf E. Principles of optics. London, N.Y., Paris: Pergamon Press Publ., 1970. 808 p.

10. MTFLab. Software User Manual. Detector type: CCD. Rev: 4.6.0.6 as of October 18st, 2012. 116 p.

11.  ОСТ 3-2635-82 Устройства для измерения функции передачи модуляции съемочных объективов. Метод проверки. Введ. 01.01.1984. Дом Оптики, 1984. 23 с.

       OST (Industry standard) 3-2635-82 Devices for measuring the modulation transfer function of shooting lenses. Method of verification [in Russian]. Introd. on January 1, 1984. Dom Optiki. 1984. 23 p.

12.  Pharr M., Jakob W., Humphreys G. Physically based rendering: from theory to implementation. Cambridge, London: The MIT Press, 2023. 1243 p.

13.  Гонсалес Р., Вудс Р. Цифровая обработка изображений / Перевод с англ. Рубанова Л.И., Чочиа П.А. Под ред. Чочиа П.А. М.: Техносфера, 2012. 1104 с.

       Gonzalez R.C., Woods R.E. Digital image processing. Upper Saddle River, New Jersey: Pearson Prentice Hall, 2008. 954 p.

14.  Дрыгин Д.А., Острун А.Б. Разработка алгоритма расчета концентрации энергии инфракрасных оптических систем с учетом влияния эффекта перетекания зарядов на матричном фотоприемном устройстве // Оптический журнал. 2020. Т. 87. № 9. С. 3–11. https://doi.org/ 10.17586/1023-5086-2020-87-09-03-11

       Drygin D.A., Ostrun A.B. Development of an algorithm for calculating the energy concentration of infrared optical systems taking into account the charge flow effect in a photodetector array // Journal of Optical Technology. 2020. V. 87(9). P. 506–512. https://doi.org/10.1364/JOT.87.000506

15.  Li L., Cao J., Wei S., Jiang Y., Shen X. Improved on-orbit MTF measurement method based on point source arrays // Remote Sens. 2023. № 16 (15). P. 4028. https://doi.org/10.3390/rs15164028

16.  Pu D., Tao H., Ge Y., Liu C., Zhu J. Improvements on sampling of point spread function in optical transfer function measurement // Optics Express. 2022. № 7 (30). P. 10953–10968. https://doi.org/10.1364/OE.452979

17.  Иванова Т.В., Летова Е.Ю., Калинкина О.С., Никифорова Д.В., Стригалев В.Е. Анализ методов определения центра пятна рассеяния в присутствии аберраций // Научно-технический вестник информационных технологий, механики и оптики. 2021. Т. 21. № 3. С. 334–341. https://doi.org/10.17586/2226-1494-2021-21-3-334-341

       Ivanova T.V., Letova E.Yu., Kalinkina O.S., Nikiforova D.V., Strigalev V.E. An analysis of methods for aberrated spot diagram center evaluation [in Russian] // Scientific and Technical Journal of Information Technologies, Mechanics and Optics. 2021. V. 21. № 3. P. 334–341. https://doi.org/10.17586/2226-1494-2021-21-3-334-341

18. Goodman J. Introduction to Fourier optics. New York: W. H. Freeman and Company, 2017. 491 p.