ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-07-52-61

УДК: 530.145.1

Numerical study of high-order soliton molecules generation process in an all-fiber erbium-doped ring laser

For Russian citation (Opticheskii Zhurnal):

Орехов И.О., Аверкиева У.С., Исмаил А., Янь Ф., Федоренко А.Ю., Сазонкин С.Г., Дворецкий Д.А., Денисов Л.К., Карасик В.Е. Численное исследование процесса генерации групп связанных солитонов высокого порядка в полностью волоконном кольцевом эрбиевом лазере // Оптический журнал. 2025. Т. 92. № 7. С. 52–61. http://doi.org/10.17586/1023-5086-2025-92-07-52-61

 

Orekhov I.O., Averkieva U.S., Ismaeel A., Yan F., Fedorenko A.Yu., Sazonkin S.G., Dvoretskiy D.A., Denisov L.K., Karasik V.E. Numerical study of high-order soliton molecules generation process in an all-fiber erbium-doped ring laser [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 7. P. 52–61. http://doi.org/10.17586/1023-5086-2025-92-07-52-61

For citation (Journal of Optical Technology):
-
Abstract:

Scope of research. Process of formation of high-order bound soliton groups (soliton molecules) in an erbium-doped fiber laser with mode-locking. The purpose of the work. Development a numerical model that enables us to investigate the mechanisms underlying the formation of high-order bound soliton groups (soliton molecules), as well as determining the influence of key parameters of a femtosecond fiber laser resonator on the emergence of stable multi-pulse regimes. Method. A numerical approach based on coupled nonlinear Schrödinger equations, solved using the split-step Fourier method while accounting for refractive index nonlinearity, gain saturation, and polarization effects. In our simulations, we consider the configuration of a fully fiber ring erbium-doped laser with a highly nonlinear fiber in the resonator. Main results. A stable solution of the Schrödinger equation for more than ten bound pulses is obtained, which confirms the possibility of generating high-order soliton molecules. It is established that the main factor responsible for splitting the initial pulse into many bound solitons is the high gain of the active medium, while polarization effects and phase delays enable fine control over the number and temporal separation of the pulses. Results are in agreement with experimental data and the theory of energy quantization in femtosecond fiber lasers. Practical significance. The proposed model can be used to improve fiber lasers, which is highly relevant for quantum computing and optical communications.

Keywords:

femtosecond fiber laser, ultrashort pulse laser, mode-locking, soliton molecules, generation of soliton molecules

Acknowledgements:

this research was conducted with financial support from the Russian Science Foundation, project № 23–29–00184 "Research of methods for generating soliton molecules in the telecommunications spectrum range based on ultrashort pulse fiber lasers".

OCIS codes: 190.0190, 200.0200, 270.0270

References:

1.    Манин Ю.И. Вычислимое и невычислимое. М.: Советское радио, 1980. 128 с.

       Manin Yu.I. Computable and non-computable [in Russian]. Moscow: Sovetskoye radio Publ., 1980. 128 p.

2.   Feynman R.P. Simulating physics with computers // Intern. J. Theoretical Phys. 1982. V. 21. № 6/7. P. 467–488. https://doi.org/10.1007/BF02650179

3.   Gerck E. Algorithms for quantum computation: The derivatives of discontinuous functions // Frontiers in Mathematics. 2022. V. 11. № 68. P. 1–11. https://dji.org/10.3390/math11010068

4.   Marshall K., Pooser R., Siopsis G., et. al. Repeat-until-success cubic phase gate for universal continuous-variable quantum computation // Phys. Rev. A. 2015. V. 91. № 3. P. 032321. https://doi.org/10.1103/PhysRevA.91.032321

5.   Pfister O. Continuous-variable quantum computing in the quantum optical frequency comb // J. Phys. B: Atomic, Molecular and Opt. Phys. 2020. V. 53. № 1. P. 012001. https://dx.doi.org/10.1088/1361-6455/ab526f

6.   Menicucci N.C., Flammia S.T., Pfister O. One-way quantum computing in the optical frequency comb // Phys. Rev. Lett. 2008. V. 101. № 13. P. 130501. https://doi.org/10.1103/PhysRevLett.101.130501

7.    Yang Z., Jahanbozorgi M., Jeong D., et al. A squeezed quantum microcomb on a chip // Nature Commun. 2021. V. 12. № 4781. P. 1–8. https://doi.org/10.1038/s41467-021-25054-z

8.   Jahanbozorgi M., Yang Z., Sun S., et al. Generation of squeezed quantum microcombs with silicon nitride integrated photonic circuits // Optica. 2023. V. 10. № 8. P. 1100–1101. https://doi.org/10.1364/OPTICA.498670

9.   Malomed B.A. Bound solitons in the nonlinear Schrödinger/Ginzburg–Landau equation // Large Scale Structures in Nonlinear Phys. 1991. V. 44 № 10. P. 6954–695. https://doi.org/10.1007/3-540-54899-8_48

10. Dvoretskiy D.A., Sazonkin S.G., Kudelin I.S., et al. Multibound soliton formation in an erbium-doped ring laser with a highly nonlinear resonator // IEEE Photon. Technol. Lett. 2020. V. 32. № 1. P. 43–46. https://doi.org/10.1109/LPT.2019.2956570

11.  Ma H., Huang H., Deng A. Solitons and soliton molecules in two nonlocal Alice-Bob fifth-order KdV systems // Intern. J. Theoretical Phys. 2021. V. 60. № 8. P. 3051–3062. https://doi.org/10.1007/s10773-021-04893-y

12.  Orekhov I.O., Ismaeel A., Lazdovskaia U.S., et al. Soliton molecules order control and their propagation features in an anomalous dispersion optical fiber // Opt. & Laser Technol. 2024. V. 171. P. 110444. https://doi.org/10.1016/j.optlastec.2023.110444

13.  Li C., He J., He R., et al. Analysis of real-time spectral interference using a deep neural network to reconstruct multi-soliton dynamics in mode-locked lasers // APL Photonics. 2020. V. 5. № 11. P. 116101. https://doi.org/10.1063/5.0024836

14.  Dvoretskiy D.A., Sazonkin S.G., Kudelin I.S., et al. Multibound solitons generation with a controllable number of bound states in a passive mode-locked all-fiber erbium-doped ring laser // SPIE Optics + Optoelectronics. Prague, Czech Republic. April 1–4, 2019. P. 1–8. https://doi.org/10.1117/12.2520745

15.  Agrawal G.P. Nonlinear fiber optics (5th. ed.). Academic Press, 2013. 648 p.

16.  Wang S., Docherty A., Marks B.S., et al. Comparison of numerical methods for modeling laser mode locking with saturable gain // JOSA B. 2013. V. 30. № 11. P. 3064–3074. https://doi.org/10.1364/JOSAB.30.003064

17.  Renninger W.H., Chong A., Wise F.W. Area theorem and energy quantization for dissipative optical solitons // JOSA B. 2010. V. 27. № 10. P. 1978–1982. https://doi.org/10.1364/JOSAB.27.001978

18. Tang D.Y., Zhao L.M., Zhao B., et al. Mechanism of multisoliton formation and soliton energy quantization in passively mode-locked fiber lasers // Phys. Rev. A. 2005. V. 72. № 4. P. 043816. https://doi.org/10.1103/PhysRevA.72.043816

19.  Zhu Y., Sun X., Jin L., et al. Short length Lyot filter utilized in dual-wavelength and wavelength tunable mode-locked fiber laser generation // 2019 Asia Communications and Photonics Conf. (ACP). Chengdu, China. November 02–05, 2019. P. 1–3. https://doi.org/10.48550/arXiv.1912.11411

20.      Binh L.N. Optical multi-bound solitons. Boca Raton: CRC Press, 2018, 567 p.