DOI: 10.17586/1023-5086-2025-92-07-62-72
УДК: 620.179.18
Methodology for selection of the optimal operating spectral range of a Fabry–Perot interferometer based on chirped fiber Bragg gratings
Full text on elibrary.ru
Сычева С.Д., Ахмеров А.Х., Дейнека И.Г., Кузнецов В.Н., Пиха Д.В., Волковский С.А., Яндыбаева Ю.И., Дмитриев А.А. Методика определения оптимального рабочего спектрального диапазона интерферометра Фабри–Перо на основе чирпированных волоконных решеток Брэгга // Оптический журнал. 2025. Т. 92. № 7. С. 62–72. http://doi.org/10.17586/1023-5086-2025-92-07-62-72
Sycheva S.D., Akhmerov A.Kh., Deyneka I.G., Kuznetsov V.N., Pikha D.V., Volkovsky S.A., Yandybaeva Yu.I., Dmitriev A.A. Methodology for selection of the optimal operating spectral range of a Fabry–Perot interferometer based on chirped fiber Bragg gratings [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 7. P. 62–72. http://doi.org/10.17586/1023-5086-2025-92-07-62-72
Subject of research. Methodology for determining the optimal operating spectral range of a Fabry–Perot interferometer based on chirped fiber Bragg gratings. Purpose of work. Development and research of optimal operating wavelength range adjustment methodology for Fabry–Perot interferometer based on chirped fiber Bragg gratings. Method. Sequential change of the vertical-emitting laser central wavelength and subsequent analysis of the signal-to-noise ratio of the data from the Fabry–Perot interferometer based on chirped fiber Bragg gratings sensor as part of the research setup, under conditions of pulsed acoustic action on a steel plate. The criteria for selection the operating spectral range in signal analysis is the achieved maximum value of the signal-to-noise ratio. Main results. An original methodology for determining the optimal operating wavelength range of a Fabry–Perot interferometer based on chirped fiber Bragg gratings has been developed. A signal-to-noise ratio of 23.5 dB has been achieved. Data repeatability assessment has shown that the standard deviation of signal-to-noise ratio values is 0.4 dB. Practical significance. The proposed methodology can be used to create new technological solutions, in particular to solve the problem of non-destructive testing of industrial objects. Fabry–Perot interferometers based on chirped fiber Bragg gratings can be used in more complex conditions due to their increased sensitivity, ensuring stable registration of less powerful acoustic effects.
Fabry–Perot interferometer, chirped fiber Bragg gratings, acoustic measurements
Acknowledgements:the work was supported by the Russian Science Foundation, project № 23-79-01274
OCIS codes: 120.4290, 120.2230, 040.2840
References:- Habel W.R. Optical fiber methods in nondestructive evaluation. Handbook of Advanced Non-Destructive Evaluation. Springer, 2018. 1–49 p. https://doi.org/10.1007/978-3-319-30050-4_39-1
- Zhang X., Jin J., Jiang J., et al. Acoustic emission sensing in fiber Bragg grating based on phase demodulation for material health detection // Opt. and Lasers Eng. 2023. V. 171. P. 107823. https://doi.org/10.1016/j.optlaseng.2023.107823
- Zhe G., Che J., Wei H., et al. Large dynamic-range fiber Bragg grating sensor system for acoustic emission detection // Appl. Opt. 2021. V. 60. P. 547–5552. http://doi.org/10.1364/AO.427185
- Reimer V., Abdalwareth A., Flachenecker G., et al. Non-destructive technique for characterization fiber Bragg gratings via diffraction profile // Photonic Instrumentation Engineering XI. United States, California. March 11, 2024. https://doi.org/10.1117/12.3002504
- Chanu-Rigaldies S., Lecomte P., Ollivier S., et al. Self-mixing interferometer for acoustic measurements through vibrometric calibration // Sensors. 2024. V. 24. P. 1777. https://doi.org/10.3390/s24061777
- Moradi H., Parvin P., Ojaghloo Al., et al. Ultrasensitive fiber optic Fabry–Pérot acoustic sensor using phase detection // Measurement. 2021. V. 172. P. 108953. https://doi.org/10.1016/j.measurement.2020.108953
- Ромашко Р.В., Башков О.В., Ефимов Т.А. и др. Особенности применения адаптивных интерферометрических волоконно-оптических датчиков акустической эмиссии для контроля состояния полимерных композиционных материалов // Дефектоскопия. 2024. Т. 1. C. 21–27. http://doi.org/10.31857/S0130308224010023
Romashko R.V., Bashkov O.V., Efimov T.A., et al. Features of application of adaptive interferometric fiber sensors of acoustic emission to monitor the condition of polymer composite materials [in Russian] // Defektoskopia. 2024. № 1. P. 21–27. http://doi.org/10.31857/S0130308224010023
- Залетин В.В., Савитский О.А., Силников М.В. и др. Акустико-эмиссионная диагностика корпусных конструкций системой интегрированных волоконно-оптических датчиков для обеспечения безопасной эксплуатации самолетов и космических аппаратов [на англ. языке] // Акта Астронавтика. 2024. Т. 229. С. 547–551. https://doi.org/10.1016/j.actaastro.2024.02.001
Zaletin V.V., Savitsky O.A., Silnikov M.V., et al. Acoustic emission diagnostics of a hull structures by a system of integrating fiber-optic sensors for the aircraft and spacecraft safe operation // Acta Astronautica. 2024. V. 229. P. 547–551. https://doi.org/10.1016/j.actaastro.2024.02.001
- Bakhtiari G.S., Masoudi A., Brambilla G. Long range Raman-amplified distributed acoustic sensor based on spontaneous Brillouin scattering for large strain sensing // Sensors. 2022. V. 22. P. 2047. https://doi.org/10.3390/s22052047
- Zhang Q., Zhu Yup., Luo X., et al. Acoustic emission sensor system using a chirped fiber-Bragg-grating Fabry–Perot interferometer and smart feedback control // Opt. Lett. 2017. V. 42. P. 631–634. https://doi.org/10.1364/OL.42.000631
- Tosi D. Review of chirped fiber Bragg grating (CFBG) fiber-optic sensors and their applications // Sensors. 2018. V. 18. P. 2147. https://doi.org/10.3390/s18072147
- Rose J.L., Philtron J., Liu G., et al. A hybrid ultrasonic guided wave-fiber optic system for flaw detection in pipe // Appl. Sci. 2018. V. 8. P. 727. https://doi.org/10.3390/app8050727
- Ахмеров А.Х., Сычева С.Д., Ходжимухамедов О.И. и др. Метод картирования акустической энергии для акустооптической системы неразрушающего контроля с автоматическим позиционированием [на англ. языке] // Умные электромеханические системы. 2024. Т. 544. С. 111–125. https://doi.org/10.1007/978-3-031-64277-7_9
Akhmerov A.K., Sycheva S.D., Khodzhimukhamedov O.I., et al. Acoustic energy mapping method for acousto-optical non-destructive testing system with automated positioning // Studies in Systems. Decision and Control. 2024. V. 544. P. 111–125. https://doi.org/10.1007/978-3-031-64277-7_9
- Бочкова С.Д., Волковский С.А., Ефимов М.Е. и др. Метод локализации воздействия в композитном материале с использованием волоконно-оптических датчиков акустической эмиссии // Приборы и техника эксперимента. 2020. № 4. С. 73–77. https://doi.org/10.31857/S0032816220040230
Bochkova S.D., Volkovsky S.A., Efimov M.E., et al. A method for determining the locations of impacts in a composite material using fiber optical acoustic emission sensors // Instruments and Experimental Techniques. 2020. V. 63. P. 507–510. https://doi.org/10.1134/S0020441220040235
15. Ефимов М.Е. Метод и аппаратура для регистрации акустической эмиссии и деформаций композитного графит-эпоксидного материала на основе анализа амплитудно-фазовых характеристик сигнала волоконно-оптического интерферометра Фабри–Перо Статья поступила в редакцию 01.11.2024
Одобрена после рецензирования 20.03.2025
Принята к печати 30.05.2025 // Дисс. канд. техн. наук. 05.11.01. СПб.: Университет ИТМО, 2018.
Efimov M.E. Method and equipment for recording acoustic emission and deformations of composite graphite-epoxy material based on the analysis of amplitude-phase characteristics of the signal of a fiber-optic Fabry–Perot interferometer [in Russian] // PhD (Engineering). Saint Petersburg: ITMO University Press, 2018.
- Дмитриев А.А., Грибаев А.И., Варжель С.В. и др. Метод описания высокопроизводительных волоконных брэгговских решеток [на англ. языке] // Оптико-волоконная технология. 2021. Т. 63. С. 102508. https://doi.org/10.1016/J.YOFTE.2021.102508
Dmitriev A.A., Gribaev A.I., Varzhel S.V., et al. High-performance fiber Bragg gratings arrays inscription method // Opt. Fiber Technol. 2021. V. 63. P. 102508. https://doi.org/10.1016/J.YOFTE.2021.102508
ru