ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-07-95-101

УДК: 535.21

Nonlinear optical properties of silicon under the influence of ultrashort laser pulses of the infrared spectrum range (1.2–2.4 µm)

For Russian citation (Opticheskii Zhurnal):

Смирнов Н.А., Гулина Ю.С., Буслеев Н.И., Кудряшов С.И., Пахольчук П.П., Котенев Т.Ю. Нелинейно-оптические свойства кремния при воздействии ультракоротких лазерных импульсов инфракрасного спектрального диапазона (1,2–2,4 мкм) // Оптический журнал. 2025. Т. 92. № 7. С. 95–101. http://doi.org/10.17586/1023-5086-2025-92-07-95-101

 

Smirnov N.A., Gulina Yu.S., Busleev N.I., Kudryashov S.I., Pakholchuk P.P., Kotenev T.Yu. Nonlinear optical properties of silicon under the influence of ultrashort laser pulses of the infrared spectrum range (1.2–2.4 µm) [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 7. P. 95–101. http://doi.org/10.17586/1023-5086-2025-92-07-95-101

For citation (Journal of Optical Technology):
-
Abstract:

Subject of the study. Nonlinear absorption in single-crystal silicon in the mid infrared spectrum range (1.2–2.4 µm) in the field of high-intensity femtosecond laser pulses. Aim of study. Measuring the coefficients of silicon multiphoton absorption in the field of high-intensity femtosecond laser pulses in the mid infrared range to select effective modes of silicon laser processing. Method. Multiphoton absorption coefficients were estimated by measuring the radiant power of radiation transmitted through silicon with subsequent approximation of the dependences. Main results. Nonlinear optical properties of silicon excited by high-intensity ultrashort laser pulses of the mid infrared radiation were investigated. The two-photon nature of absorption was demonstrated. The two-photon absorption coefficient for wavelengths of 1.2–2.4 µm is in the range of 1.1–0.4 cm/GW. Practical significance. Understanding the process of nonlinear photoionization and obtaining such parameters as multiphoton absorption coefficients is of key importance in choosing effective modes of silicon laser processing.

Keywords:

silicon, nonlinear absorption, ultrashort laser pulses, mid infrared range

Acknowledgements:

the study was supported by the grant of the Russian Science Foundation № 24-22-00290

OCIS codes: 140.0140, 240.0310

References:

1. Jalali B., Fathpour S. Silicon photonics // J. Lightwave Technol. 2006. V. 24. № 12. P. 4600–4615. https://doi.org/10.1109/JLT.2006.885782
2. Margalit N., Xiang C., Bowers S.M., et al. Perspective on the future of silicon photonics and electronics // Appl. Phys. Lett. 2021. V. 118. № 22. https://doi.org/10.1063/5.0050117
3. Tokel O., Turnalı A., Makey G., et al. In-chip microstructures and photonic devices fabricated by nonlinear laser lithography deep inside silicon // Nat. Photonics. 2017. V. 11. № 10. P. 639–645. https://doi.org/10.1038/s41566-017-0004-4
4. Chambonneau M., Grojo D., Tokel О., et al. In-volume laser direct writing of silicon—challenges and opportunities // Laser & Photonics Rev. 2021. V. 15. № 11. С. 2100140. https://doi.org/10.1002/lpor.202100140
5. Wang X., Yu X., Berg M., et al. Nanosecond laser writing of straight and curved waveguides in silicon with shaped beams // J. Laser Appl. 2020. V. 32. № 2.https://doi.org/10.2351/1.5139973
6. Turnali A., Han M., Tokel O. Laser-written depressedcladding waveguides deep inside bulk silicon // JOSA B. 2019. V. 36. № 4. P. 966–970. https://doi.org/10.1364/JOSAB.36.000966
7. Chambonneau M., Li Q., Chanal M., et al. Writing waveguides inside monolithic crystalline silicon with nanosecond laser pulses // Opt. Lett. 2016. V. 41. № 21. P. 4875–4878. https://doi.org/10.1364/OL.41.004875
8. Zavedeev E.V., Kononenko V.V., Gololobov V.M., et al. Modeling the effect of fs light delocalization in Si bulk // Laser Phys. Lett. 2014. V. 11. № 3. P. 036002. https://doi.org/10.1088/1612-2011/11/3/036002
9. Bristow A.D., Rotenberg N., Van Driel H.M. Two-photon absorption and Kerr coefficients of silicon for 850–2200 nm // Appl. Phys. Lett. 2007. V. 90. № 19. P. 191104. https://doi.org/10.1063/1.2737359
10. Lin Q., Zhang J., Piredda G., et al. Dispersion of silicon nonlinearities in the near infrared region // Appl. Phys. Lett. 2007. V. 91. № 2. P. 021111. https://doi.org/10.1063/1.2750523
11. Ионин А.А., Кудряшов С.И., Селезнев Л.В. и др. Термическое плавление и абляция кремния фемтосекундным лазерным излучением // ЖЭТФ. 2013. Т. 143. № 3. С. 403–422. https://doi.org/10.7868/S0044451013030012
 Ionin A.A., Kudryashov S.I., Seleznev L.V., et al. Thermal melting and ablation of silicon by femtosecond laser radiation // JETP. 2013. V. 116. P. 347–362. https://doi.org/10.1134/S106377611302012X
12. Sokolowski-Tinten K., von der Linde D. Generation of dense electron-hole plasmas in silicon // Phys. Rev. B. 2000. V. 61. № 4. P. 2643. https://doi.org/10.1103/PhysRevB.61.2643
13. Smirnov N.A., Kudryashov S.I., Rudenko A.A., et al. Pulsewidth and ambient medium effects during ultrashort-pulse laser ablation of silicon in air and water // Appl. Surf. Sci. 2021. V. 562. P. 150243. https://doi.org/10.1016/j.apsusc.2021.150243
14. Mareev E.I., Lvov K.V., Rumiantsev B.V., et al. Effect of pulse duration on the energy delivery under nonlinear propagation of tightly focused Cr: Forsterite laser radiation in bulk silicon // Laser Phys. Lett. 2019. V. 17. № 1. P. 015402. https://doi.org/10.1088/1612-202X/ab5d23
15. Гулина Ю.С. Измерение коэффициента двухфотонного поглощения ультракоротких лазерных импульсов с длиной волны 1030 nm на центрах окраски природного алмаза // Опт. и спектроск. 2022. Т. 130. № 4. C. 540–543. https://doi.org/10.21883/OS.2022.04.52269.60-21
 Gulina Y.S. Measurement of two-photon absorption coefficient of 1030 nm ultrashort laser pulses on natural diamond color centers // Opt. and Spectrosc. 2023. V. 131. № 10. P. 986–989. https://doi.org/10.1134/S0030400X23100089
16. Chapple P.B., Staromlynska J., Hermann J.A., et al. Single-beam Z-scan: Measurement techniques and analysis // J. Nonlinear Opt. Phys. & Materials. 1997. V. 6. № 03. P. 251–293. https://doi.org/10.1142/S0218863597000204
17. Van Stryland E.W., Sheik-Bahae M. "Z-scan." Characterization techniques and tabulations for organic nonlinear optical materials. Routledge, 2018. 708 p.