DOI: 10.17586/1023-5086-2025-92-08-107-117
УДК: 53.06, 57.089
Mobile optical complex for express monitoring of the human cardiovascular system
Full text on elibrary.ru
Давыдов В.В., Зайцева А.Ю., Мазинг М.С., Давыдов Р.В., Мсукар С., Якушева М.А., Проводин Д.С., Исакова Д.Д. Система мобильных оптических датчиков для контроля состояния сердечно-сосудистой системы человека в экспресс-режиме // Оптический журнал. 2025. Т. 92. № 8. С. 107–117. http://doi.org/10.17586/1023-5086-2025-92-08-107-117
Davydov V.V., Zaitceva A.Yu., Mazing M.S., Davydov R.V., Msukar S., Yakusheva M.A., Provodin D.S., Isakova D.D. A system of mobile optical sensors for state control of the human cardiovascular system in express mode [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 8. P. 107–117. http://doi.org/10.17586/1023-5086-2025-92-08-107-117
Subject of study. Blood. Based on data on its parameters and flow rate, scientists and doctors determine the functional state of a person. Aim of study. Development of a method and mobile optical sensors for express diagnostics of a person’s functional state in real time. Method. A fundamentally new method for monitoring the functional state of a person is proposed based on the simultaneous recording of the pulse wave and tissue oximetry using new optical sensors that do not create significant problems for a person during his activities. Main results. A new method for monitoring the functional state of a person in real time with a high degree of reliability of the results obtained, which are confirmed by clinical examination of patients. New designs of mobile optical sensors with a single system for processing results. A new, more accessible method for controlling the level of maximum oxygen consumption by the human body. Practical significance. The new method and the system of mobile optical sensors for its implementation allow solving the problems that arise when obtaining reliable information about the state of the human cardiovascular system in real time, as well as about the aerobic power of the human body based on the data on the maximum oxygen consumption in the places and moments of time necessary for control.
blood, radiation, wavelength, absorption, scattering, reflection, pulse wave, oximetry, signal-to-noise ratio, reliability
Acknowledgements:the study was supported by a grant from the Russian Science Foundation (Project № 24-21-00404)
OCIS codes: 020.3690
References:1. Farley J., Brown L.A.E., Garg P. et. al. Pulmonary transit time is a predictor of outcomes in heart failure: a cardiovascular magnetic resonance first-pass perfusion study // BMC Cardiovascular Disorders. 2024. V. 24(1). P. 329. https://doi.org/10.1186/s12872-024-04003-w
2. Marusina M.Y., Fedorov A.V., Prokhorovich V.E. et. al. Development of acoustic methods of control of the stress-strain state of threaded connections // Measurement Techniques. 2018. V. 61(3). P. 297–302. https://doi.org/10.1007/s11018-018-1424-3
3. Mazing M.S., Zaitceva A.Y., Kislyakov Y.Y. et. al. Monitoring of oxygen supply of human tissues using a noninvasive optical system based on a multi-channel integrated spectrum analyzer // International Journal of Pharmaceutical Research. 2020. V. 12. P. 1974–1978. https://doi.org/10.31838/iipr/2020.SP2.355
4. Kazanskiy N.L., Butt M.A., Degtyarev S.A. et. al. Achievements in the development of plasmonic waveguide sensors for measuring the refractive index // Computer Optics. 2020. V. 44. № 3. Р. 295–318. https://doi.org/10.18287/2412-6179-CO-743
5. Naumova V.V., Davydov V.V., Mazing M.S. et. al. New method of processing measurement results of tissue oxygen saturation abnormalities // St. Petersburg State Polytechnical University Journal. Physics and Mathematics. 2022. V. 15(S3.2) P. 206–211.
6. Муравьева С.В., Козуб К.Е., Пронин С.В. Оптические и электрофизиологические методы оценки функционального состояния нейронных сетей зрительной системы // Оптический журнал. 2021. Т. 88. № 12. С. 42–49. http://doi.org/10.17586/1023-5086-2021-88-12-42-49
Murav'eva S.V., Kozub K.E., Pronin S.V. Optical and electrophysiological techniques for functional assessment of vision system neuronal networks // Journal of Optical Technology. 2021. V. 88. № 12. P. 710–715. https://doi.org/10.1364/JOT.88.000710
7. Davydov R., Zaitceva A., Isakova D. et. al. New methodology of human health express diagnostics based on pulse wave measurements and occlusion test // Journal of Personalized Medicine. 2023. V. 13. № 3. Р. 443. https://doi.org/10.3390/jpm13030443
8. Zhang D., Wang W., Fang A. Association between resting heart rate and coronary artery disease, stroke, sudden death and noncardiovascular diseases: a meta-analysis // Canadian Medical Association Journal. 2016. V. 188. P. E384–E392. https://doi.org/10.1503/cmaj.160050
9. Luks A.M., Swenson E. R. Pulse oximetry for monitoring patients with COVID-19 at home. Potential pitfalls and practical guidance // Annals of the American Thoracic Society. 2020. V. 17. P. 1040–1046. https://doi.org/10.1513/AnnalsATS.202005-418FR
10. Cutrim R.C., Santos-de-Araújo A.D., Anselmo-e-Silva C.I. et. al. Impact of applying different levels of thresholdbased artifact correction on the processing of heart rate variability data in individuals with temporomandibular disorder // Scientific Reports. 2024. V. 14(1). P. 24569. https://doi.org/10.1038/s41598-024-76287-z
11. Bierman A., Benner K., Rea M.S. Melanin bias in pulse oximetry explained by light source spectral bandwidth // British Journal of Anaesthesia. 2024. V. 132(5). P. 957–963. https://doi.org/10.1016/j.bja.2024.01.037
12. Rodriguez A.J., Vasudevan S., Farahmand M. et. al. Tissue mimicking materials and finger phantom design for pulse oximetry // Biomedical Optics Express. 2024. V. 15(4). P. 2308–2327. https://doi.org/10.1364/BOE.518967
13. Katan M., Pearl O., Tzroya A. et. al. A self-calibrated single wavelength biosensor for measuring oxygen saturation // Biosensors. 2024. V. 14(3). P. 132. https://doi.org/10.3390/bios14030132
14. Davydov V.V., Porfir’eva E.V., Davydov R.V. Nondestructive method for testing elasticity of walls of human veins and arteries // Russian Journal of Nondestructive Testing. 2022. V. 58(9). P. 847–857. https://doi.org/10.1134/S1061830922090042
15. Fine J., McShane M.J., Coté G.L. et. al. A computational modeling and simulation workflow to investigate the impact of patient-specific and device factors on hemodynamic measurements from non-invasive photoplethysmography // Biosensors. 2022. V. 12. P. 598. https://doi.org/10.3390/bios12080598
16. Blaney G., Frias J., Tavakoli F. et. al. Dual-ratio approach to pulse oximetry and the effect of skin tone // Journal of biomedical optics. 2024. V. 29. P. S333111. https://doi.org/10.1117/1.JBO.29.S3.S33311
17. Ochoa-Gutierrez V., Guerrero-Zuñiga S., Reboud J. et. al. Eumelanin and pheomelanin modelling in optical oximetry using pulse oximetry (for 540 nm and 660 nm): DC component // Advances in experimental medicine and biology. 2024. V. 1463. P. 233–237. https://doi.org/10.1007/978-3-031-67458-7_39
18. Wu J. Hyperspectral imaging for non-invasive blood oxygen saturation assessment // Photodiagnosis and Photodynamic Therapy. 2024. V. 45. P. 104003. https://doi.org/10.1016/j.pdpdt.2024.104003
19. Yaqub M.A., Zanoletti M., Cortese L. et. al. Non-invasive monitoring of microvascular oxygenation and reactive hyperemia using hybrid, near-infrared diffuse optical spectroscopy for critical care // Journal of Visualized Experiments. 2024. V. 2024(207). P. e66062. https://doi.org/10.3791/66062
20. Pirzada M., Altintas Z. Recent progress in optical sensors for biomedical diagnostics // Micromachines. 2020. V. 11. № 4. P. 356. https://doi.org/10.3390/mi11040356
21. Davydov V.V., Grebenikova N.M., Smirnov K.Y. An optical method of monitoring the state of flowing media with low transparency that contain large inclusions // Measurement Techniques. 2019. V. 62(6). P. 519–526. https://doi.org/10.1007/s11018-019-01655-5
22. Jafernik K., Kubica P., Sharafan M. et. al. Phenolic compound profiling and antioxidant potential of different types of Schisandra henryi in vitro cultures // Applied Microbiology and Biotechnology. 2024. V. 108(1). P. 322. https://doi.org/10.1007/s00253-024-13159-6
23. Balkrishna A., Joshi M., Varshney Y. et. al. In-depth phytochemical profiling of Roscoea purpurea (Kakoli): Comparative UHPLC-MS/QToF and GC-MS/MS analysis of supercritical CO2 fluid and conventional solvent based extractive processes // Journal of Pharmaceutical and Biomedical Analysis. 2024. V. 25115. P. 116444. https://doi.org/10.1016/j.jpba.2024.116444
24. Niu C. The application of improved DTW algorithm in sports posture recognition // Systems and Soft Computing. 2024. V. 6. P. 200163. https://doi.org/10.1016/j.sasc.2024.200163
ru