ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-08-40-50

УДК: 681.787

Modeling and experimental research of the polarization diversity scheme in a coherent optical reflectometer

For Russian citation (Opticheskii Zhurnal):

Ушанов С.А., Плотников М.Ю., Куничкин Д.П., Волков А.В. Применение схемы с поляризационным разнесением в когерентной рефлектометрии // Оптический журнал. 2025. Т. 92. № 8. С. 40–50. http://doi.org/10.17586/1023-5086-2025-92-08-40-50

 

Ushanov S.A., Plotnikov M.Y., Kunichkin D.P., Volkov A.V. Application of the polarization diversity scheme in coherent reflectometry [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 8. P. 40–50. http://doi.org/10.17586/1023-5086-2025-92-08-40-50

For citation (Journal of Optical Technology):
-
Abstract:

The subject of the study. The paper presents the results of a mathematical and experimental study of optical circuits for eliminating the effect of polarization fading in a coherent optical reflectometer. The purpose of the study. The aim of the work was to increase the range, reduce measurement errors and improve stability of the coherent reflectometer to the effect of polarization fading that occur during interference of the local oscillator signal and Rayleigh scattering by using various coherence receiving schemes. Method. For the theoretical study of various optical circuits of the receiving cascade of a coherent reflectometer designed to eliminate the effect of polarization fading, a mathematical model has been developed that makes it possible to estimate the average level of the optical signal detected by the photodetector and its standard deviation at the random polarization state of the registered Rayleigh scattering. An experimental verification of the selected circuit was also performed on a valid sample of the device. The main results. The results of mathematical modeling have shown that the scheme with polarization diversity based on two polarization beam splitters and balanced photodetectors has the greatest effectiveness in suppressing the effect of polarization fading. Experimental verification of the selected scheme in a valid sample of a coherent reflectometer has shown that the use of a polarizing diversity scheme is effective in eliminating the effect of polarization fading and reducing the spread of values of recorded reflectograms. Practical significance. The results obtained made it possible to theoretically justify the choice of an optical scheme for use in a coherent optical reflectometer. The results of an experimental study of the chosen scheme demonstrated its effectiveness in eliminating the effect of polarization fading.

Keywords:

coherent reflectometer, optical reflectometry, interferometric measurements, polarization fading

Acknowledgements:

the research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (Project № FSER-2024-0006)

OCIS codes: 060.0060, 230.0230, 250.0250

References:

1. Zhang C., Ito F. Recent progress of fiber diagnostic technologies for optical fiber networks: distributed fiber sensing and fiber characterization // Metro and Data Center Optical Networks and Short-Reach Links. 2022. V. 12027. P. 89–104. https://doi.org/10.1117/12.2607242
2. Листвин А.В. Рефлектометрия оптических волокон / Под ред. Листвина А.В., Листвина В.Н. Москва: ЛЕСАРарт, 2005. 208 с.

Listvin A.V. Reflectometry of optical fibers / Ed. by Litvin A.V., Listvin V.N. Moscow: LESARart, 2005. 208 p.
3. Chen X., Zou N., Liang L., He R., Liu J., Zheng Y., Wang F., Zhang X., Zhang Y. Submarine cable monitoring system based on enhanced COTDR with simultaneous loss measurement and vibration monitoring ability // Optics Express. 2021. V. 29. № 9. P. 13115–13128. https://doi.org/10.1364/OE.418920
4. Hartog A.H. An introduction to distributed optical fibre sensors. Boca Raton: CRC press, 2017. 472 p. 
5. Веретенников Н.П., Леонтьев Р.Г. Арктика РФ: транспортная и телекоммуникационная инфраструктура, экономика и безопасность страны // Национальная ассоциация ученых. 2021. Т. 2. № 71. С. 29–37. https://doi.org/10.31618/nas.2413-5291.2021.2.71.479
Veretennikov N.P., Leontiev R.G. The Arctic of the Russian Federation: Transport and telecommunication infrastructure, economy and security of the country // National Association of Scientists. 2021. V. 2. № 71. P. 29–37.
6. Kersey A.D., Dandridge A., Tveten A.B. Elimination of polarization induced signal fading in interferometric fiber sensors using input polarization control // Optical Fiber Sensors / Optica Publishing Group. 1988. P. WCC2. https://doi.org/10.1364/OFS.1988.WCC2
7. Лебедев В.В., Петров А.Н., Величко Е.Н. и др. Сопоставление методов компенсации поляризационного фединга волоконно-оптических линий передачи аналоговых широкополосных сигналов по вносимым шумам и достижимому динамическому диапазону // Журнал технической физики. 2021. Т. 91. № 11. С. 1738–1743. https://doi.org/10.21883/JTF.2021.11.51537.94-21
Lebedev V.V., Petrov A.N., Velichko E.N. et al. Comparison of methods for compensation of polarization feeding of fiber-optic transmission lines of analog broadband signals based on introduced noise and achievable dynamic range // Journal of Technical Physics. 2021. V. 91. № 11. P. 1738–1743. https://doi.org/10.21883/JTF.2021.11.51537.94-21
8. Ren M., Lu P., Chen L. et al. Theoretical and experimental analysis of $\Phi $-OTDR based on polarization diversity detection // IEEE Photonics Technology Letters. 2015. V. 28. № 6. P. 697–700. https://doi.org/10.1109/LPT.2015.2504968
9. Meissner P. Coherent optical fiber communications // Optical Space Communication II. / SPIE. 1991. V. 1522. P. 182–193. https://doi.org/10.1117/12.46094
10.Izumita Hisashi. Highly developed coherent detection OTDR technology and its applications to optical fiber networks monitoring // PhD diss. Waseda University –Tokyo, 2008. 210 p. 
11. Lin H., Ma L., Hu Y. - Elimination of polarization-induced signal fading and reduction of phase noise in interferometric optical fiber sensor using polarization diversity receivers // Optik. 2013. V. 124. № 21. P. 4976–4979. https://doi.org/10.1016/j.ijleo.2013.03.033
12.Woźniak W.A., Kurzynowski P., Zdunek M. Malus Law — interferometric interpretation // Optica Applicata. 2013. V. 43. № 2. P. 237–246. https://doi.org/10.5277/oa130204
13.Glance B. Polarization independent coherent optical receiver // Journal of Lightwave Technology. 1987. V. 5. № 2. P. 274–276. https://doi.org/10.1109/JLT.1987.1075494
14. Solli D.R., McCormick C.F., Chiao R. et al. Photonic crystal polarizers and polarizing beam splitters // Journal of Applied Physics. 2003. V. 93. № 12. P. 9429–9431. https://doi.org/10.1063/1.1574174