DOI: 10.17586/1023-5086-2025-92-08-82-94
Real vehicle trajectory monitoring based on ultra-weak fiber Bragg grating distributed acoustic sensing and improved hough transform
Full text on elibrary.ru
Shuhao Wen, Zhihui Luo, Xiaoan Chen, Changyan Ran. Real vehicle trajectory monitoring based on ultra-weak fiber Bragg grating distributed acoustic sensing and improved Hough transform (Мониторинг траектории движения транспортного средства в реальном времени системой распределённого акустического зондирования с использованием сверхслабой волоконной брэгговской решётки и программного обеспечения на основе улучшенного преобразования Хафа) [на англ. языке] // Оптический журнал. 2025. Т. 92. № 8. С. 82–94. http://doi.org/10.17586/1023-5086-2025-92-08-82-94
Subject of study. Ultra-weak fiber Bragg grating distributed acoustic sensing is an innovative technology with significant advantages. In this paper, a vehicle trajectory monitoring method based on ultra-weak fiber Bragg grating distributed acoustic sensing technology is proposed. Purpose of the work. Achieving cost-effective, highly accurate, and efficient traffic monitoring through the use of the ultra-weak fiber Bragg grating distributed acoustic sensing technology and improved algorithms. Method. The method converts the vibration signals collected from buried road fiber optic cables into a spatio-temporal 2-dimensional vibration energy response using the Stockwell transform and enhances the vehicle vibration trajectory with the EDLines algorithm. The vehicle trajectory is then detected and extracted using the improved progressive probabilistic Hough transform algorithm. Based on the slope of the vehicle trajectory data, the task of estimating traffic flow and vehicle speed can also be accomplished. Main results. Experimental results demonstrate that the vehicle vibration signal can be significantly enhanced using the Stockwell transform and EDLines algorithms. The improved progressive probabilistic Hough transform algorithm increases the vehicle trajectory detection speed by 33% and the detection accuracy by 51% compared to the original algorithm. Simultaneously, the accuracy of traffic flow estimation exceeds 91%, and the accuracy of vehicle speed estimation exceeds 94%. Practical significance. This provides a viable solution for realizing efficient vehicle trajectory monitoring using the ultra-weak fiber Bragg grating distributed acoustic sensing system.
ultra-weak fiber Bragg grating, distributed acoustic sensing, Vehicle trajectory extraction, Stockwell transform, progressive probabilistic Hough transform algorithm
Acknowledgements:this work was supported by the National Key Research and Development Program of China (Grant No. 2021YFC3001903)
OCIS codes: 350.4600, 120.4640, 100.2960
References:1. Wang Z., Lv C., Wang F. Y. A new era of intelligent vehicles and intelligent transportation systems: digital twins and parallel intelligence // IEEE Trans. Intell. Veh. 2023. V. 8. № 4. P. 2619–2627. https://doi.org/10.1109/TIV.2023.3264812
2. Rajashekara K., Koppera S. Data and energy impacts of intelligent transportation — a review // World Electr. Veh. J. 2024. V. 15. № 6. P. 262. https://doi.org/10.3390/wevj15060262
3. Lei C., Ji Y., Shangguan Q., Du Y., Samuel S. Vehicle group identification and evolutionary analysis using vehicle trajectory data // Physica A Stat. Mech. Appl. 2024. V. 639. P. 129656. http://doi.org/10.2139/ssrn.4646895
4. Vishnoi R. A review on detection of speedy vehicles // Asian J. Multidim. Res. 2021. V. 10. № 11. P. 346–350.
5. Singhal N., Prasad L. Sensor based vehicle detection and classification – a systematic review // Int. J. Eng. Syst. Model. Simul. 2022. V. 13. № 1. P. 38–60. https://doi.org/10.1504/IJESMS.2022.122731
6. Ye Z., Wang W., Wang X., Yang F., Peng F., Yan K., Kou H., Yuan A. Sensitivity characteristics of Fabry–Pérot pressure sensors based on hollow-core microstructured fibers // Front. Earth Sci. 2023. V. 10. P. 992571. https://doi.org/10.1109/JLT.2013.2269136
7. Kou X.W., Du Q.G., Huang L.T., Wang H.H., Li Z.Y. Highway vehicle detection based on distributed acoustic sensing // Opt. Express. 2024. V. 32. № 16. P. 27068–27080. https://doi.org/10.1364/OE.522337
8. Sun Y., Li H., Fan C., Yan B., Chen J., Yan Z., Sun Q. Review of a specialty fiber for distributed acoustic sensing technology // Photonics. 2022. V. 9. № 5. P. 277. https://doi.org/10.3390/photonics9050277
9. Shang Y., Sun M., Wang C., Yang J., Du Y., Yi J., Zhao W., Wang Y., Zhao Y., Ni J. Research progress in distributed acoustic sensing techniques // Sensors. 2022. V. 22. № 16. P. 6060. https://doi.org/10.3390/s22166060
10.Chiang C.Y., Jaber M., Chai K.K., Loo J. Distributed acoustic sensor systems for vehicle detection and classification // IEEE Access. 2023. V. 11. P. 31293–31303. https://doi.org/10.1109/ACCESS.2023.3260780
11. Litzenberger M., Coronel C., Bajic K., Wiesmeyr C., Döller H., Schweiger H.B., Calbris C. Seamless distributed traffic monitoring by distributed acoustic sensing (das) using existing fiber optic cable infrastructure // Real corp. 2021. V. 7. P. 1215–1218.
12. Wang G., Pang Z., Wang F., Chen Y., Dai H., Wang B. Urban fiber based laser interferometry for traffic monitoring and analysis // J. Lightwave Technol. 2022. V. 41. № 1. P. 347–354.
13. Catalano E., Coscetta A., Cerri E., Cennamo N., Zeni L., Minardo A. Automatic traffic monitoring by ϕ-OTDR data and Hough transform in a real-field environment // Appl. Opt. 2021. V. 60. № 13. P. 3579–3584. https://doi.org/10.1364/AO.422385
14. Narisetty C., Hino T., Huang M. F., Ueda R., Sakurai H., Tanaka A., Otani T., Ando T. Overcoming challenges of distributed fiber-optic sensing for highway traffic monitoring // Transp. Res. Rec. 2021. V. 2675. № 2. P. 233–242. https://doi.org/10.1177/0361198120960134
15. Corera I., Piñeiro E., Navallas J., Sagues M., Loayssa A. Long-range traffic monitoring based on pulse-compression distributed acoustic sensing and advanced vehicle tracking and classification algorithm // Sensors. 2023. V. 23. № 6. P. 3127. https://doi.org/10.3390/s23063127
16. Luo Z., Yang Z., Chen X., Ran C., Huang J., Ye Y. Separating method for multi-source vibration signals in ultra-weak fiber Bragg grating distributed acoustic sensors // Opt. Fiber Technol. 2023. V. 81. P. 103501.
17. Liu C., Qiu S., Wang G., Cheng C., Tang J., Yang M. Simultaneous distributed acoustic and temperature sensing system based on ultra-weak chirped fiber Bragg grating array // Opt. Express. 2023. V. 31. № 11. P. 18516–18524. https://doi.org/10.1364/OE.487205
18. De Almeida Coelho R., Brito N.S.D. Power measurement using Stockwell transform // IEEE Trans. Power Deliv. 2020. V. 36. № 5. P. 3091–3100.
19. Beuter C., Oleskovicz M. S-transform: from main concepts to some power quality applications // IET Signal Process. 2020. V. 14. № 3. P. 115–123. https://doi.org/10.1049/iet-spr.2019.0042
20. Zhao S., Zhang T., Wei H. Fast visual inertial odometry with point-line features using adaptive EDLines algorithm // Meas. Sci. Technol. 2022. V. 33. № 10. P. 105401. https://doi.org/10.1088/1361-6501/ac7a04
21. Marzougui M., Alasiry A., Kortli Y., Baili J. A lane tracking method based on progressive probabilistic Hough transform // IEEE access. 2020. V. 8. P. 84893–84905. https://doi.org/10.1109/ACCESS.2020.2991930
22. Li H., Bao H., Ma Y. Image rectification of industrial equipment nameplate based on progressive probabilistic Hough transform // Commun. Comput. Inf. Sci. 2022. V. 34. P. 363–372. https://doi.org/10.1007/978-981-19-7943-9_32
23. Yan X., Wang G., Wang G., Wang Y., Fu X. A novel biologically-inspired method for underwater image enhancement // Signal Process. Image Commun. 2022. V. 104. P. 116670. https://doi.org/10.1016/j.image.2022.116670
ru