DOI: 10.17586/1023-5086-2025-92-08-95-106
УДК: 535.319, 681.7.013.8, 681.7.067.2
Prediction of the influence of optical homogeneity of materials on the image quality of multi-lens optical systems
Full text on elibrary.ru
Вензель В.И., Семёнов А.А., Соломин С.О. Прогнозирование влияния оптической однородности материалов на качество изображения многолинзовых оптических систем // Оптический журнал. 2025. Т. 92. № 8. С. 95–106. http://doi.org/10.17586/1023-5086-2025-92-08-95-106
Venzel V.I., Semenov A.A., Solomin S.O. Prediction of the influence of optical homogeneity of materials on the image quality of multi-lens optical systems [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 8. P. 95–106. http://doi.org/10.17586/1023-5086-2025-92-08-95-106
Subject of research. The prediction of the influence of optical homogeneity of materials on the image quality of multi-lens objectives based on the results of measuring related parameters of lens blanks. The purpose of the study. The determination of criteria for materials’ selection in order to achieve the set parameters of objectives’ quality. Method. To determine (by modelling in calculation software package) the influence of parameters, which are related to the optical homogeneity of materials, on the image quality, to determine the dependence of lens aberrations from ray path in blanks, to determine the aggregated aberrations in multi-lens objectives. Main results. It is shown that there is a possibility for determination of requirements for optical homogeneity of blanks’ materials — taking into account the reduction of optical path in lenses, the compensation of third-order aberrations and the influence coefficient. Practical significance. A criterion for selecting optical materials based on the homogeneity of the refractive index is presented, which makes it possible to predict the image quality of optical systems.
optical materials, optical homogeneity, birefringence, wave aberrations, modulation transfer function, the Strehl ratio
OCIS codes: 220.0220, 080.1005
References:1. GOST (Russian National Standart) 23136-93. Optical materials. Parameters [in Russian]. Introd. 10/21/1993. Moscow: Standarts Publ., 1995. 24 p.
2. ISO 10110-18:2018. Stress birefringence, bubbles and inclusions, homogeneity, and striae. Geneva, ISO. 22 p.
3. GOST (Russian National Standart) 3518-80. Optical glass. Method for determination of optical homogeneity on collimator [in Russian]. Introd. 1/1/1982. Moscow: Standarts Publ., 1982. 9 p.
4. ISO/TR 14999-3:2005. Optics and photonics — interferometric measurement of optical elements and optical systems. Part 3: Calibration and validation of interferometric test equipment and measurements. Geneva, ISO. 34 p.
5. Venzel V.I., Dmitriev I.Y., Muraveva E.S., Semenov A.A. Technology for creating a large-sized lens objective for the infrared region of the spectrum made of optical crystals // Journal of Optical Technology. 2024. V. 91. № 9. P. 626–633. https://doi.org/10.1364/JOT.91.000626
6. Romanova G.E., Parpin M.A., Seregin D.A. Lecture note on the course «Computer methods of optics control». St. Petersburg: St. Petersburg State University ITMO, 2011. 185 p.
7. ISO 19740: 2018. Optics and photonics. Optical materials and components. Test method for homogeneity of infrared optical materials. Geneva, ISO. 22 p.
8. Venzel’ V.I., Gorelov A.V., Egorova E.S., Kuznetsova N.Ya., Lavrent’ev E.S., Obraztsov V.S., Sinel’nikov M.I. Monitoring the optical homogeneity of materials for the IR region // Journal of Optical Technology. 2014. V. 81. № 9. P. 551–555. https://doi.org/10.1364/JOT.81.000551
9. Venzel V.I., Semenov A.A., Solomin S.O. Engineering interferometric method for testing the optical homogeneity // Contenant. 2022. № 4. P. 73–86.
10. Venzel V.I., Semenov A.A., Migel L.I. The system for monitoring the optical homogeneity of the material for the infrared spectrum // Contenant. 2021. № 2. P. 12–25.
11. Vasil’eva L.V., Lebedev O.A., Nuzhin V.S., Solk S.V. Design and fabrication of lens objectives for operation in the IR region // Journal of Optical Technology. 2003. V. 70. № 4. P. 280–283. https://doi.org/10.1364/JOT.70.000280
12. Sirazetdinov V.S., Dmitriev I.Yu., Linskiĭ P.M., Nikitin N.V. How to determine the wave aberrations of an optical system from the intensity distribution of the focused beam // Journal of Optical Technology. 2019. V. 86. № 8. P. 458–465. https://doi.org/10.1364/JOT.86.000458
13. Sirazetdinov V.S., Dmitriev I.Y., Linskij P.M., Nikitin N.V. Method for determining wave aberrations of optical system // RF Patent № RU 2753627 C1. Bul. 2021. № 23.
14. ZEMAX User manual. April 14, 2010. Moscow. 986 p.
15. Betenski E., Hopkins R., Shannon R., Peck W., Wolf W., Wetherell W., Swindell W., Hall J. Applied optics and optical engineering. New York: Academic Press, 1980. 528 p.
16. Sokol’skiy M.N. Optical image tolerance and quality. Leningrad: Mashinostroenie Publishers, 1989. 220 p.
17. Gan M.A., Nikulina E.A. Determining the topography of the birefringence in fluorite crystals and a study of how it affects the image quality of photolithographic projection systems // Journal of Optical Technology. 2011. V. 78. № 11. P. 706–708. https://doi.org/10.1364/JOT.78.000706
18. Electronic resource URL: https://trioptics.com/products/imagemaster-hr-tempcontrol-universal-imagequality-mtf-testing/ («Trioptics» GmbH/Measurement system «ImageMaster»).
19. Khomchenko A. Polarization interferometry of stressed states in Glass // Bulletin of the BelarusianRussian University. 2018. № 1. C. 66–73.
20. Starovoytov A.G., Vasilenko A.N., Khomchenko A.V., Cherkasiva I.A. Estimation of birefringence measurement inaccuracy by use of optical polarimetry // Bulletin of the Belarusian-Russian University. 2016. № 3. P. 146–151.
ru