ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-09-14-23

УДК: 535.417.2, 53.082.54

Development and research of a fiber-optic Fabry–Perot interferometer with an air cavity between the resonator mirrors

For Russian citation (Opticheskii Zhurnal):

Коннов Д.А., Варжель С.В., Коннов К.А. Разработка и исследование волоконно-оптического интерферометра Фабри–Перо с воздушной полостью между зеркалами резонатора // Оптический журнал. 2025. Т. 92. № 9. С. 14–23. http://doi.org/10.17586/1023-5086-2025-92-09-14-23

 

Konnov D.A., Varzhel S.V., Konnov K.A. Development and research of a fiber-optic Fabry–Perot interferometer with an air cavity between the resonator mirrors [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 9. P. 14–23. http://doi.org/10.17586/1023-5086-2025-92-09-14-23

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Fiber-optic Fabry–Perot interferometer with an air cavity between the resonator mirrors. Aim of study. Development of the design of a fiber-optic Fabry–Perot interferometer with an air cavity between the resonator mirrors and its manufacturing technology, increasing the visibility of the interference pattern and the free spectral range. Method. The Fabry–Perot interferometer contains two collimating structures with resonator mirrors coaxially placed and separated along the optical axis, each of which includes a coaxially connected optical fiber and a fiber gradient lens representing a section of a multimode gradient optical fiber. The opposite polished end of the gradient lens with a reflective coating thereon forms the reflective surface of the interferometer resonator. Main results. Samples were fabricated with an interferometer base in air from 0.5 to 5 mm in 0.5 mm increments. The visibility of the interference pattern in the wavelength range from 1300 to 1310 nm was 0.989 to 0.679, and the free dispersion region lies in the range from 1.707 to 0.178 nm. Practical significance. The developed interferometer allows its use as a sensitive element of a refractometer for measuring the refractive index of gases and liquids in the range from 1 to 1.47 with a sensitivity of 190.4 pm/RIU.

Keywords:

gradient lens, refractive index gradient fiber, Fabry–Perot interferometer, interference pattern, refractive index sensor

Acknowledgements:

the research was carried out within the state assignment of Ministry of Science and Higher Education of the Russian Federation (Project № FSER-2024-0006).

OCIS codes: 535.417.2

References:
  1. Ma C., Peng D., Bai X., et al. A review of optical fiber sensing technology based on thin film and Fabry–Perot cavity // Coatings. 2023. V. 13. № 7. P. 1277. https://doi.org/10.3390/coatings13071277
  2. Rao Y.J., Deng M., Duan D.W., et al. Micro Fabry–Perot interferometers in silica fibers machined by femtosecond laser // Opt. Exp. 2007. V. 15. № 21. P. 14123–14128. https://doi.org/10.1364/OE.15.014123
  3. Li E., Peng G.-D., Ding X. High spatial resolution fiber-optic Fizeau interferometric strain sensor based on an in-fiber spherical microcavity // Appl. Phys. Lett. 2008. V. 92. № 10. P. 101117. https://doi.org/10.1063/1.2895637
  4. Villatoro J., Finazzi V., Coviello G., et al. Photonic crystal fiber enabled micro Fabry–Perot interferometer // Opt. Lett. 2009. V. 34. № 16. P. 2441–2443. https://doi.org/10.1364/OL.34.002441
  5. Ferreira M.S., Bierlich J., Kobelke J., et al. Towards the control of highly sensitive Fabry–Pérot strain sensor based on hollow-core ring photonic crystal fiber // Opt. Exp. 2012. V. 20. № 20. P. 21946–21952. https://doi.org/10.1364/OE.20.021946
  6. Favero F.C., Araujo L., Bouwmans G., et al. Spheroidal Fabry–Perot microcavities in optical fibers for high-sensitivity sensing // Opt. Exp. 2012. V. 20. № 7. P. 7112–7118. https://doi.org/10.1364/OE.20.007112
  7. Wei T., Han Y.K., Tsai H.L., et al. Miniaturized fiber inline Fabry–Perot interferometer fabricated with a femtosecond laser // Opt. Lett. 2008. V. 33. № 6. P. 536–538. https://doi.org/10.1364/OL.33.000536
  8. Duan D.W., Rao Y., Hou Y.-S., et al. Microbubble based fiber-optic Fabry–Perot interferometer formed by fusion splicing single-mode fibers for strain measurement // Appl. Opt. 2012. V. 51. № 8. P. 1033–1036. https://doi.org/10.1364/AO.51.001033
  9. Machavaram V.R., Badcock R.A., Fernando G.F. Fabrication of intrinsic fiber Fabry–Perot sensors in silica fibres using hydrofluoric acid etching // Sens. Actuators, A. 2007. V. 138. № 1. P. 248–260. https://doi.org/10.1016/j.sna.2007.04.007
  10. Liu S., Wang Y., Liao C., et al. High-sensitivity strain sensor based on in-fiber improved Fabry–Perot interferometer // Opt. Lett. 2014. V. 39. № 7. P. 2121–2124. https://doi.org/10.1364/OL.39.002121
  11.  Egorova O.N., Semjonov S.L., Medvedkov O.I., et al. High-beam quality, high-efficiency laser based on fiber with heavily Yb3+-doped phosphate core and silica cladding // Opt. Exp. 2015. V. 40. № 16. P. 3762–3765. https://doi.org/10.1364/OL.40.003762
  12.  Ma Z., Pang F., Liu H., et al. Air microcavity formed in sapphire-derived fiber for high temperature sensing // Proc. 26th Intern. Conf. Optical Fiber Sensors. Lausanne, Switzerland. September 24–28, 2018. https://doi.org/10.1364/OFS.2018.WF48
  13.  Mao-qing C., He-ming W., Yong Zh., et al. Temperature insensitive air-cavity Fabry–Perot gas pressure sensor based on core-offset fusion of hollow-core fibers // Sens. Actuators. A. 2019. V. 298. № 15. P. 111589. https://doi.org/10.1016/j.sna.2019.111589
  14.  Qin T., Hangzhou Y., Kok-Sing L., et al. Temperature and strain response of in-fiber air-cavity Fabry–Perot interferometer under extreme temperature condition // Optik. 2020. V. 220. P. 165034. https://doi.org/10.1016/j.ijleo.2020.165034
  15.  Xiaopei C., Fabin S., Zhuang W., et al. Micro-air-gap based intrinsic Fabry–Perot interferometric fiber-optic sensor // Appl. Opt. 2006. V. 45. № 30. P. 7760–7766. https://doi.org/10.1364/AO.45.007760
  16.  Donlagic D., Pevec S. Fiber-optic measurement system and methods based on ultra-short cavity length Fabry–Perot sensors and low resolution spectrum analysis // US Patent 1 010 1202 B2. 2018. Publ. Oct. 16, 2018.
  17.  Электронный ресурс URL: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=11167 (Thorlabs / Каталог оптики для микроскопии).

Electronic resource URL: https://www.thorlabs.com/newgrouppage9.cfm?objectgroup_id=11167 (Thorlabs / Catalog of optics for microscopy).

  1. Коннов Д.А., Казачкова И.Д., Савин В.В. и др. Разработка и исследование волоконно-оптического датчика температуры на основе интерферометра Фабри-Перо, полученного методом сварки оптических волокон // Оптический журнал. 2023. Т. 90. № 9. С. 64–72. http://doi.org/10.17586/1023-5086-2023-90-09-64-72

Konnov D.A., Kazachkova I.D., Savin V.V., et al. Development and studies of a fiber-optic temperature sensor based on a Fabry–Perot interferometer obtained by welding optical fibers // J. Opt. Technol. 2023. V. 90. № 9. P. 528–532. https://doi.org/10.1364/JOT.90.000528

  1. Коннов Д.А., Казачкова И.Д., Коннов К.А. и др. Разработка и исследование волоконно-оптического датчика температуры на основе регенерированной волоконной брэгговской решетки // Оптический журнал. 2024. Т. 91. № 5. С. 66–71. http://doi.org/10.17586/1023-5086-2024-91-05-66-71

Konnov D.A., Kazachkova I.D., Konnov K.A., et al. Development and research of a fiber-optic temperature sensor based on a regenerated fiber Bragg grating // J. Opt. Technol. 2024. V. 91. № 5. P. 330–333. https://doi.org/10.1364/JOT.91.000330

  1. Коннов Д.А., Казачкова И.Д., Коннов К.А., и др. Разработка и исследование волоконно-оптического датчика температуры на основе суперпозиции двух регенерированных волоконных брэгговских решёток // Оптический журнал. 2024. Т. 91. № 12. С. 63–69. http://doi.org/10.17586/1023-5086-2024-91-12-63-69

Konnov D.A., Kazachkova I.D., Konnov K.A., et al. Development and research of a fiber-optic temperature sensor based on the superposition of two regenerated fiber Bragg gratings // J. Opt. Technol. 2024. V. 91. № 12. https://doi.org/10.1364/JOT.91.000000