ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2025-92-09-24-34

УДК: 535.016

Guiding properties of a planar waveguide based on a three-periodic magnetophotonic crystal

For Russian citation (Opticheskii Zhurnal):

Глухов И.А., Паняев И.С., Санников Д.Г., Дадоенкова Ю.С., Дадоенкова Н.Н. Направляющие свойства планарного волновода на основе трехпериодического магнитофотонного кристалла // Оптический журнал. 2025. Т. 92. № 9. С. 24–34. http://doi.org/10.17586/1023-5086-2025-92-09-24-34

 

Glukhov I.A., Panyaev I.S., Sannikov D.G., Dadoenkova Yu.S., Dadoenkova N.N. Guiding properties of a planar waveguide based on a three-periodic magnetophotonic crystal [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 9. P. 24–34. http://doi.org/10.17586/1023-5086-2025-92-09-24-34  

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. Optical waveguide based on a one-dimensional three-periodic magnetophotonic crystal formed by dielectrics layers and ferrite garnet layers magnetized to saturation. Aim of study. Finding the existence frequency regions for hybrid modes and establishing the polarization structure of guided modes in a magnetophotonic waveguide, as well as determining the degree of influence of 180° magnetization reversal and magneto-optical layers demagnetization on the type of dispersion spectra. Method. 4ґ4 transfer matrix method. Main results. The influence of parameters of the magnetic and non-magnetic layers (the subcell’s period numbers and bigyrotropy) on the eigenwave spectra of a photonic-crystal waveguide has been investigated. It is shown that the magnetization of the layers leading to the hybrid mods formation from the TE- and TM- polarized modes of the unperturbed structure is the cause of appearance of the convergence regions of neighboring dispersion curves, as well as a noticeable (of about 9ґ109 rad/s) frequency shift of the mode propagation constant compared to demagnetized state of the system. Practical significance. The results can be used in designing of new magneto-optical devices based on three-periodic photonic crystals working in the infrared regime (narrow-band tunable filters, beam formers of laser diodes for optical communications, etc.).

Keywords:

magnetophotonic crystal, optical waveguide

Acknowledgements:

this work was supported by the Russian Science Foundation, project № 23-22-00466.

OCIS codes: 230.7390, 230.4170, 160.3820

References:

1. Белотелов В.И., Звездин А.К. Фотонные кристаллы и другие метаматериалы. М.: Бюро Квантум, 2006. 144 c.
Belotelov V.I., Zvezdin A.K. Photonic crystals and other metamaterials [in Russian]. Moscow: Buro Kvantum Publ., 2006. 144 p.
2. Inoue M., Baryshev A.V., Levy M. Magnetophotonics: From theory to applications. Heidelberg: Springer-Verlag, 2013. 228 p.
3. Кринчик Г.С. Физика магнитных явлений М.: изд. Московского ун-та, 1976. 367 c.
Krinchik G.S. Physics of magnetic phenomena [in Russian]. Moscow: Moscow University Publ., 1976. 367 p.
4. Lyubchanskii I.L., Dadoenkova N.N., Lyubchanskii M.I., et al. Magnetic photonic crystals // J. Phys. D. Appl. Phys. 2003. V. 36. № 18. P. R277–R287. https://doi.org/10.1088/0022-3727/36/18/R01
5. Panyaev I.S., Dadoenkova N.N., Dadoenkova Yu.S., et al. Four-layer nanocomposite structure as an effective optical waveguide switcher for near-IR regime // J. Phys. D. Appl. Phys. 2016. V. 49. № 43. P. 435103. https://doi.org/10.1088/0022-3727/49/43/435103
6. Zvezdin A.K., Kotov V.A. Modern magnetooptics and magnetooptical materials. Boca Raton: CRC Press, 1997. 381 p.
7. Inoue M., Arai K., Fujii T., et al. Magneto-optical properties of one-dimensional photonic crystals composed of magnetic and dielectric layers // J. Appl. Phys. 1998. V. 83. № 11. P. 6768–6770. https://doi.org/10.1063/1.367789
8. Priye V., Pal B.P., Thyagarajan K. Analysis and design of a novel leaky YiG film guided wave optical isolator // J. Light. Technol. 1998. V. 16. № 2. P. 246–250.  https://doi.org/10.1109/50.661017

9. Sylgacheva D., Khokhlov N., Kalish A., et al. Transverse magnetic field impact on waveguide modes of photonic crystals // Opt. Lett. 2016. V. 41. № 16. P. 3813–3816. https://doi.org/10.1364/OL.41.003813
10. Паняев И.С., Санников Д.Г. Оптический планарный волновод на основе слоистого магнитоактивного метаматериала // Компьютерная оптика. 2018. Т. 42. № 5. С. 807–815. https://doi.org/10.18287/2412-6179-2018-42-5-807-815
Panyaev I.S., Sannikov D.G. Optical waveguide on the basis of a layered magnetoactive metamaterial [in Russian] // Comput. Opt. 2018. V. 42. № 5. P. 807–815. https://doi.org/10.18287/2412-6179-2018-42-5-807-815
11. Berreman D.W. Optics in stratified and anisotropic media: 4×4-Matrix formulation // JOSA. 1972. V. 62. № 4. P. 502–510. https://doi.org/10.1364/JOSA.62.000502
12. Johnson B., Walton A.K. The infra-red refractive index of garnet ferrites // Br. J. Appl. Phys. 1965. V. 16. № 4. P. 475–477.  https://doi.org/10.1088/0508-3443/16/4/310
13.Torfeh M., Le Gall H. Theoretical analysis of hybrid modes of magnetooptical wave-guides // Phys. Status Solidi. 1981. V. 63. № 1. P. 247–258. https://doi.org/10.1002/pssa.2210630133
14. Doormann V., Krumme J.P., Klages C.P., et al. Measurement of the refractive index and optical absorption spectra of epitaxial bismuth substituted yttrium iron garnet films at UV to near-IR wavelengths // Appl. Phys. A Solids Surfaces. 1984. V. 34. № 4. P. 223–230. https://doi.org/10.1007/BF00616576
15. Wallenhorst M., Niemoller M., Dotsch H., et al. Enhancement of the nonreciprocal magneto-optic effect of TM modes using iron garnet double layers with opposite Faraday rotation // J. Appl. Phys. 1995. V. 77. № 7. P. 2902–2905. https://doi.org/10.1063/1.359516
16. Krumme J.P., Klages C.P., Doormann V. Measurement of the magnetooptic properties of bismuth-substituted iron garnet films using piezobirefringent modulation // Appl. Opt. 1984. V. 23. № 8. P. 1184–1192. https://doi.org/10.1364/AO.23.001184
17. Wood D.L., Nassau K. Optical properties of gadolinium gallium garnet // Appl. Opt. 1990. V. 29. № 25. P. 3704. https://doi.org/10.1364/ao.29.003704
18.Kischkat J., Peters S., Gruska B., et al. Mid-infrared optical properties of thin films of aluminum oxide, titanium dioxide, silicon dioxide, aluminum nitride, and silicon nitride // Appl. Opt. 2012. V. 51. № 28. P. 6789–6798. https://doi.org/10.1364/AO.51.006789
19. Malitson I.H. Interspecimen comparison of the refractive index of fused silica // JOSA. 1965. V. 55. № 10. P. 1205–1209. https://doi.org/10.1364/JOSA.55.001205
20. Гончаренко А.М., Карпенко В.А. Основы теории оптических волноводов. М.: Едиториал УРСС, 2004. 240 с.
Goncharenko A.M., Karpenko V.A. Fundamentals of the theory of optical waveguides [in Russian]. Moscow: Editorial URSS Publ., 2004. 240 p.
21. Альшиц В.И., Любимов В.Н. Аномалии в спектре собственных электромагнитных волн в анизотропных пластинах // ФТТ. 2003. Т. 45. № 2. C. 222–226. https://doi.org/10.1134/1.1553522
Alshits V.I., Lyubimov V.N. Anomalies in the spectrum of electromagnetic eigenwaves in anisotropic plates [in Russian] // Phys. Solid State. 2003. V. 45. P. 231–235. https://doi.org/10.1134/1.1553522