DOI: 10.17586/1023-5086-2025-92-09-35-43
УДК: 535.36:534.23
Parameter estimation of acousto-optical focusing device for visible radiation
Full text on elibrary.ru
Никитин П.А. Оценка параметров акустооптического фокусирующего устройства видимого излучения // Оптический журнал. 2025. Т. 92. № 9. С. 35–43. http://doi.org/10.17586/1023-5086-2025-92-09-35-43
Nikitin P.A. Parameter estimation of acousto-optical focusing device for visible radiation [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 9. P. 35–43. http://doi.org/10.17586/1023-5086-2025-92-09-35-43
Subject of study. Acousto-optical focusing device using linear-frequency modulated ultrasonic waves. Aim of study. Determination of acousto-optical focusing device parameters for estimation of its aberrations. Method. Numerical modeling of acousto-optic interaction in the regime of low diffraction efficiency. Main results. A model that takes into account the length of acousto-optic interaction as well as diffraction effects is developed. It is shown that the focal spot is a narrow strip and has a strongly asymmetric structure, and the wave front in the spot has a slope of about 4° with respect to the wave front of the initial beam. Using an oblique incidence of light on the focusing device reduces the spot size by a factor of about 2 to 17 µm by a level 84% of the energy concentration function, and the focal spot structure becomes symmetrical. Practical significance. The obtained results can be used in the development of adaptive optical systems.
acousto-optic interaction, linear frequency modulation, aberration
Acknowledgements:the work was funded by the Ministry of Science and Higher Education of the Russian Federation under State contract of the Scientific and Technological Center of Unique Instrumentation of the Russian Academy of Sciences.
OCIS codes: 050.1940, 070.1060, 170.7170, 260.3090
References:1. Kotov V.M. Broadband acousto-optic modulation of optical radiation // Acoustical Phys. 2019. V. 65. № 4. P. 369–373. https://doi.org/10.1134/S1063771019040080
2. Pang Y., Zhang K., Lang L. Review of acousto-optic spectral systems and applications // Frontiers in Phys. 2022. V. 10. P. 1102996. https://doi.org/10.3389/fphy.2022.1102996
3. Balakshy V., Voloshin A. Anisotropic acousto-optic interaction in tellurium crystal with acoustic walk-off // Appl. Opt. 2016. V. 55. № 17. P. 4542–4549. https://doi.org/10.1364/AO.55.004542
4. Антонов С.Н., Филатов А.Л. Акустооптическая дифракция в парателлурите на медленной акустической моде. Повышение эффективности дифракции расходящегося света // ЖТФ. 2018. Т. 88. № 6. С. 902–906. https://doi.org/10.21883/JTF.2018.06.46023.2323
Antonov S.N., Filatov A.L. Acousto-optic diffraction in paratellurite by a slow acoustic mode. Increase of diffraction efficiency of divergent light // Technical Phys. 2018. V. 63. № 6. P. 876–880. https://doi.org/10.21883/JTF.2018.06.46023.2323
5. Сударев А.А., Польщикова О.В., Зотов К.В. Оптическая система для эффективной перестраиваемой акустооптической фильтрации неполяризованного излучения суперконтинуума // Оптический журнал. 2024. Т. 91. № 7. С. 80–88. https://doi.org/10.17586/1023-5086-2024-91-07-80-88
Sudarev A.A., Polschikova O.V., Zotov K.V. Optical system for efficient tunable acousto-optic filtering of unpolarized supercontinuum radiation // J. Opt. Technol. 2024. V. 91. № 7. P. 485–489. https://doi.org/10.1364/JOT.91.000485
6. Szulzycki K., Savaryn V., Grulkowski I. Rapid acousto-optic focus tuning for improvement of imaging performance in confocal microscopy [Inavited] // Appl. Opt. 2018. V. 57. № 10. P. C14. https://doi.org/10.1364/AO.57.000C14
7. VanderLugt A., Bardos A.M. Design relationships for acousto-optic scanning systems // Appl. Opt. 1992. V. 31. № 20. P. 4058–4068. https://doi.org/10.1364/AO.31.004058
8. Reddy G.D., Saggau P. Fast three-dimensional laser scanning scheme using acousto-optic deflectors // J. Biomed. Opt. 2005. V. 10. № 6. P. 064038. https://doi.org/10.1117/1.2141504
9. Konstantinou G., Kirkby P.A., Evans G.J., et al. Dynamic wavefront shaping with an acousto-optic lens for laser scanning microscopy // Opt. Exp. 2016. V. 24. № 6. P. 6283–6299. https://doi.org/10.1364/OE.24.006283
10. Балакший В.И., Парыгин В.Н., Чирков Л.Е. Физические основы акустооптики. М.: Радио и связь, 1985. 279 с.
Balakshiy V.I., Parygin V.N., Chirkov L.E. Physical principles of acousto-optics [in Russian]. Moscow: "Radio i Svyaz" Publ., 1985. 279 p.
11. Дубнищев Ю.Н. Теория и преобразование сигналов в оптических системах. СПб.: Лань, 2011. 368 с.
Dubnischev Yu.N. Theory and transformation of signals in optical systems [in Russian]. St. Petersburg: Lan` Publ., 2011. 368 p.
12. Buitrago-Duque C., Garcia-Sucerquia J. Non-approximated Rayleigh–Sommerfeld diffraction integral: Advantages and disadvantages in the propagation of complex wave fields // Appl. Opt. 2019. V. 58. № 34. P. G11. https://doi.org/10.1364/AO.58.000G11
13. Sahu R., Chaudhary S., Khare K., et al. Angular lens // Opt. Exp. 2018. V. 26. № 7. P. 8709–8718. https://doi.org/10.1364/oe.26.008709
14. Блистанов А.А., Бондаренко В.С., Переломова Н.В. и др. Акустические кристаллы / Под ред. Шаскольской М.П. М.: Наука, 1982. 632 с.
Blistanov A.A., Bondarenko V.S., Perelomova N.V., et al. Acoustic crystals [in Russian] / Ed. Shaskolskaya M.P. Moscow: "Nauka" Publ., 1982. 632 p.
15. Mehrabkhani S., Schneider T. Is the Rayleigh–Sommerfeld diffraction always an exact reference for high speed diffraction algorithms? // Opt. Exp. 2017. V. 25. № 24. P. 30229–30240. https://doi.org/10.1364/OE.25.030229
16. Uchida N. Acoustic attenuation in TeO2 // Appl. Phys. 1972. V.43. №6. P.2915–2917. https://doi.org/10.1063/1.1661627
17. Rivera-Ortega U., Pico-Gonzalez B. Wavelength estimation by using the Airy disk from a diffraction pattern with didactic purposes // Phys. Education. 2015. V. 51. № 1. P. 015012. https://doi.org/10.1088/0031-9120/51/1/015012
18. Солдатенко А.В., Верхогляд А.Г., Завьялов П.С. и др. Разработка высокоразрешающего объектива для системы синтеза инфракрасных изображений // Оптический журнал. 2020. Т. 87. № 2. С. 44–49. https://doi.org/10.17586/1023-5086-2020-87-02-44-49
Soldatenko A.V., Verkhoglyad A.G., Zaviyalov P.S., et al. Development of a high-resolution objective for an IR image synthesis system // J. Opt. Technol. 2020. V. 87. № 2. P.100–104. https://doi.org/10.1364/JOT.87.000100
19. Дрыгин Д.А., Острун А.Б. Разработка алгоритма расчета концентрации энергии инфракрасных оптических систем с учетом влияния эффекта перетекания зарядов на матричном фотоприемном устройстве // Оптический журнал. 2020. Т. 87. № 9. С. 3–11. https://doi.org/10.17586/1023-5086-2020-87-09-03-11
Drygin D.A., Ostrun A.B. Development of an algorithm for calculating the energy concentration of infrared optical systems taking into account the charge flow effect in a photodetector array // J. Opt. Technol. 2020. V. 87. № 9. P. 506–512. https://doi.org/10.1364/JOT.87.000506
20. Сцепуро Н.Г., Ковалев М.С., Красин Г.К. и др. Измерение радиуса кривизны сферической поверхности на основе уравнения переноса интенсивности // Компьютерная оптика. 2022. Т. 46. № 6. С. 877–883. https://doi.org/10.18287/2412-6179-CO-1159
Stsepuro N.G., Kovalyov M.S., Krasin G.K., et al. Measurement of the radius of curvature of a spherical surface based on the transport-of-intensity equation // Computer Opt. 2022. V. 46. № 6. P. 877–883. https://doi.org/10.18287/2412-6179-CO-1159
21. Gorevoy A., Machikhin A., Martynov G., et al. Computational technique for field-of-view expansion in AOTF-based imagers // Opt. Lett. 2022. V. 47. № 3. P. 585–588. https://doi.org/10.1364/OL.438374
22. Batshev V., Machikhin A., Gorevoy A., et al. Spectral imaging experiments with various optical schemes based on the same AOTF // Materials. 2021. V. 14. № 11. P. 2984. https://doi.org/10.3390/ma14112984
ru