DOI: 10.17586/1023-5086-2025-92-09-82-91
УДК: 53.06
Effect of thermal treatment on optoelectronic characteristics of indium tin oxide coatings
Full text on elibrary.ru
Паршин Б.А., Бутина М.В., Макеев М.О., Воронин А.С., Бурьянская Е.Л., Фадеев Ю.В., Моисеев К.М., Хыдырова С.Ю., Михалев П.А. Влияние термообработки на оптоэлектронные характеристики покрытий из оксида индия-олова // Оптический журнал. 2025. Т. 92. № 9. С. 82–91. http://doi.org/10.17586/1023-5086-2025-92-09-82-91
Parshin B.A., Butina M.V., Makeev M.O., Voronin A.S., Buryanskaya E.L., Fadeev Y.V., Moiseev K.M., Hydyrova S.Y., Mikhalev P.A. Effect of thermal treatment on opto-electronic characteristics of indium tin oxide coatings [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 9. P. 82–91. http://doi.org/10.17586/1023-5086-2025-92-09-82-91
Subject of study. The effect of annealing in a nitrogen atmosphere on the optoelectronic pro-perties and surface morphology of indium tin oxide thin films. Aim of study. Optimization of prepa-ration conditions for indium tin oxide thin films with tailored optoelectronic and morphological characteristics through variation of film thickness and annealing at 200 °C in a nitrogen atmosphere. Method. The optical properties of the films, including transparency and haze, were investigated using spectrophotometry. Electrical characteristics were measured using the four-probe method, specifically for determining surface resistance. Atomic force microscopy was employed to study the surface morphology, enabling the measurement of surface roughness and the determination of grain sizes via autocorrelation analysis. Main results. Annealing in a nitrogen atmosphere enhanced the optoelectronic properties of indium tin oxide films: transparency increased, and surface resistance decreased, as confirmed by the calculated Figure of Merit. Morphological studies revealed a reduction in grain size and an increase in their quantity with increasing film thickness, driven by the activation of diffusion and nucleation processes. Practical significance. The obtained results confirm the effectiveness of annealing in a nitrogen atmosphere as a method for enhancing the properties of indium tin oxide coatings. This creates new possibilities for their use in optoelectronic devices that require high transparency, low resistance, and structural stability.
indium tin oxide coatings, light transmittance, haze, surface resistance, thermal treatment
Acknowledgements:OCIS codes: 160.2100, 310.6860, 310.6870
References:1. Raets M., Dudink J., Raybaud C., et al. Brain vein disorders in newborn infants // Dev. Med. Child. Neurol. 2015. V. 57. P. 229–240. http://doi.org/10.1111/dmcn.12579
2. Zanaboni C., Bevilacqua M., Bernasconi F., et al. Caliber of the deep veins of the arm in infants and neonates: The VEEIN study (Vascular Echography Evaluation in Infants and Neonates) // J. Vasc. Acc. 2024. V. 25. № 4. P. 1114–1120. http://doi.org/10.1177/11297298221150942
3. Gallieni M., Pittiruti M., Biffi R. Vascular access in oncology patients // CA: Cancer J. Clin. 2008. V. 58. P. 323–346. http://doi.org/10.3322/CA.2008.0015
4. Crosbie Ph., Shah R., Krysiak P., et al. Circulating tumor cells detected in the tumor-draining pulmonary vein are associated with disease recurrence after surgical resection of NSCLC // J. Thor. Oncol. 2016. V. 11. № 10. P. 1793–1797. http://doi.org/10.1016/j.jtho.2016.06.017
5. Hussain Sh., Mubeen Iq., Ullah N., et al. Modern diagnostic imaging technique applications and risk factors in the medical field: A review // Biomed. Res. Int. 2022. P. 5164970. http://doi.org/10.1155/2022/5164970
6. Onishi N., Kataoka M., Kanao S., et al. Ultrafast dynamic contrast-enhanced MRI of the breast using compressed sensing: Breast cancer diagnosis based on separate visualization of breast arteries and veins // J. Magn. Reson. Imaging. 2018. V. 47. P. 97–104. http://doi.org/10.1002/jmri.25747
7. Adusumilli G., Christensen S., Yuen N., et al. CT perfusion to measure venous outflow in acute ischemic stroke in patients with a large vessel occlusion // J. Neuro Interv. Surg. 2024 V. 16. P. 1046–1052. http://doi.org/10.1136/jnis-2023-020727
8. Attia A., Moothanchery M., Li X., et al. Microvascular imaging and monitoring of hemodynamic changes in the skin during arterial-venous occlusion using multispectral raster-scanning optoacoustic mesoscopy // Photoacoustics. 2021. V. 22. P. 100268. http://doi.org/10.1016/j.pacs.2021.100268
9. Freund K.B., Sarraf D., Leong B.C.S., et al. Association of optical coherence tomography angiography of collaterals in retinal vein occlusion with major venous outflow through the deep vascular complex // JAMA Ophthalmol. 2018. V. 136. № 11. P. 1262–1270. http://doi.org/10.1001/jamaophthalmol.2018.3586
10. Shourav M.K., Choi J., Kim J.K. Visualization of superficial vein dynamics in dorsal hand by near-infrared imaging in response to elevated local temperature // J. Biomed. Opt. 2021. V. 26. № 2. P. 026003. http://doi.org/10.1117/1.JBO.26.2.026003
11. Kacmaz S., Ercelebi E., Zengin S., et al. The use of infrared thermal imaging in the diagnosis of deep vein thrombosis // Infrared Phys. Technol. 2017. V. 86. P. 120–129. http://doi.org/10.1016/J.INFRARED.2017.09.005
12. Lazareva E.N., Tuchin V.V. Measurement of refractive index of hemoglobin in the visible/NIR spectral range // J. Biomed. Opt. 2018. V. 23. № 3. P. 035004. http://doi.org/10.1117/1.JBO.23.3.035004
13. Pan C.T., Francisco M.D., Yen Ch.K., et al. Vein pattern locating technology for cannulation: A review of the low-cost vein finder prototypes utilizing near infrared (NIR) light to improve peripheral subcutaneous vein selection for phlebotomy // Sensors. 2019. V. 19. P. 3573. https://doi.org/10.3390/s19163573
14. Dorotić A., Kuktić I., Vuljanić D., et al. Verification of technical characteristics and performance of VeinViewer Flex, ICEN IN-G090-2 and AccuVein AV400 transillumination devices // Clin. Chim. Acta. 2021. V. 519. P. 40–47. http://doi.org/10.1016/j.cca.2021.04.001
15. Shahzad A., Saad N.M., Walter N., et al. Hyperspectral venous image quality assessment for optimum illumination range selection based on skin tone characteristics // Biomed. Eng. Line. 2014. V. 13. P. 109. https://doi.org/10.1186/1475-925X-13-109
16. Wang F., Behrooz A., Morris M., et al. High-contrast subcutaneous vein detection and localization using multispectral imaging // J. Biomed. Opt. 2013. V. 18. P. 050504. http://doi.org/10.1117/1.JBO.18.5.050504
17. Букова В.И., Крюков А.В. Устройство для неинвазивной визуализации сосудов // Тр. XVII Междунар. научно-техн. конф. Акустооптические и радиолокационные методы измерения и обработки информации — ARMIMP-2024. Суздаль, Россия. 23–26 сентября 2024. С. 321–324.
Bukova V.I., Kryukov A.V. Optical system design for vein contrast enhancement on skin [in Russian] // XVII Intern. Conf. Acoustooptic and radar methods for information measurements and processing — ARMIMP-2024 (Abstract of reports). Suzdal, Russia. September 23–26, 2024. P. 321–324.
18. Zhang H., Salo D.C., Kim D.M., et al. Penetration depth of photons in biological tissues from hyperspectral imaging in shortwave infrared in transmission and reflection geometries // J. Biomed. Opt. 2016. V. 21. № 12. P. 126006. http://doi.org/10.1117/1.JBO.21.12.126006
19. Hamza M., Skidanov R., Podlipnov V. Visualization of subcutaneous blood vessels based on hyperspectral imaging and three-wavelength index images // Sensors. 2023. V. 23. P. 8895. https://doi.org/10.3390/s23218895
20. Mzoughi M., Thiem D., Hornberger C. Blood vessel detection using hyperspectral imaging // Curr. Dir. Biomed. Eng. 2022. V. 8. P. 715–718. https://doi.org/10.1515/cdbme-2022-1182
21. Hagen N.A., Kudenov M.W. Review of snapshot spectral imaging technologies // Opt. Eng. 2013. V. 52. № 9. P. 090901. https://doi.org/10.1117/1.OE.52.9.090901
22. Батшев В.И., Крюков А.В., Мачихин А.С. и др. Оптическая система мультиспектральной видеокамеры // Оптический журнал. 2023. Т. 90. № 11. С. 113–123. http://doi.org/10.17586/1023-5086-2023-90-11-113-123
Batshev V.I., Krioukov A.V., Machikhin A.S. et al. Multispectral video camera optical system // J. Opt. Technol. 2023. V. 90. P. 706–712. http://doi.org/10.1364/jot.90.000706
23. Крюков А.В, Поспехов В.Г., Ровенская Т.С. и др. Компьютерный синтез оптических систем: уч. пособ. в 2 ч. Ч. 2. М.: изд. МГТУ им. Н.Э. Баумана, 2010. 62 с.
Kryukov A.V., Pospekhov V.G., Rovenskaya T.S., et al. Optical systems computer synthesis: Tutorial in 2 ch. Ch. 2 [in Russian]. Moscow: BMSTU Press., 2010. 62 p.
ru