DOI: 10.17586/1023-5086-2025-92-09-104-117
УДК: 535.8
Modular multimodal device for dermatoscopy and video capillaroscopy: Front lens design and evaluation of the image quality of the prototype
Full text on elibrary.ru
Марченко М.О., Крюков А.В., Быков А.А. Модульное мультимодальное устройство для дерматоскопии и видеокапилляроскопии: расчет объектива фронтальной части и оценка качества изображения опытного образца // Оптический журнал. 2025. Т. 92. № 9. С. 92–105. http://doi.org/10.17586/1023-5086-2025-92-09-92-105
Marchenko M.O., Kryukov A.V., Bykov A.A. Modular multimodal device for dermatoscopy and video capillaroscopy: Front lens design and evaluation of the image quality of the prototype [in Russian] // Opticheskii Zhurnal. 2025. V. 92. № 9. P. 92–105. http://doi.org/10.17586/1023-5086-2025-92-09-92-105
Subject of study. Optical systems of front stop objective lenses and optical systems of eyepieces in the reverse ray path. Aim of study. Design the optical lens system of a modular multimodal device operating in the modes of visual dermatoscopy, digital dermatoscopy and video capillaroscopy, and its calculation technique. Method. Synthesis of a multimodal dermatoscope lens three-component basic schemes, constructed on the basis of isoplanatic surfaces using the optical system composition method. The synthesis also used an algebraic method for calculating optical systems based on the theory of third-order aberrations. Main results. An improved modular arrangement of the device is proposed. The requirements for the optical system of the dermatoscope lens are formed, and its synthesis is performed. A method for synthesizing basic front stop lens schemes is described and new scheme variants are obtained that expand the synthesis possibilities. Based on the calculation results, a prototype lens was made. Practical significance. The evaluation of the image quality of the calculated lens of the multimodal device and its prototype confirmed the ability of its operation in visual dermatoscopy mode in a certain range of positions of the doctor's eye, in digital dermatos-copy mode with a mobile phone camera and in video capillaroscopy mode with a special additional module. The general structure of the device arrangement is defined.
dermatoscopy, videocapillaroscopy, isoplanatic surfaces, compositional synthesis, basic and corrective lenses
Acknowledgements:the study was carried out within the framework of the Scientific and Technological Centre of Unique Instrumentation of the RAS (project FFNS-2025-0008).
OCIS codes: 120.3890, 170.1470, 170.1870, 170.0110, 110.0180
References:1. Sung H., Ferlay J., Siegel R.L., et al. Global Cancer Statistics 2020: GLOBOCAN Estimates of Incidence and Mortality Worldwide for 36 Cancers in 185 Countries // A Cancer J. Clinicians. 2021. V. 71. № 3. P. 209–249.
2. Yélamos O., Braun R.P., Liopyris K., et al. Usefulness of dermoscopy to improve the clinical and histopathologic diagnosis of skin cancers // J. American Academy of Dermatology. 2019. V. 80. № 2. P. 365–377.
3. Reiter O., Mimouni I., Dusza S., et al. Dermoscopic features of basal cell carcinoma and its subtypes: A systematic review // J. American Academy of Dermatology. 2021. V. 85. № 3. P. 653–664.
4. Lupu M., Caruntu C., Popa M.I., et al. Vascular patterns in basal cell carcinoma: Dermoscopic, confocal and histopathological perspectives // Oncology Lett. 2019. V. 17. № 5. P. 4112.
5. Guryleva A.V., Machikhin A.S., Orlova E.V., et al. Photoplethysmography-based angiography of skin tumors in arbitrary areas of human body // J. Biophotonics. 2024. https://doi.org/10.1002/jbio.202400242
6. Rocha L.K.F.L., Vilain R.E., Scolyer R.A., et al. Confocal microscopy, dermoscopy, and histopathology features of atypical intraepidermal melanocytic proliferations associated with evolution to melanoma in situ // Intern. J. Dermatology. 2022. V. 61. № 2. P. 167–174. http://doi.org/10.1111/ijd.15815
7. Волков М.В., Маргарянц Н.Б., Потемкин А.В. и др. Метод визуализации кровеносных сосудов в коже человека на основе видеорегистрации кровотока с использованием лапароскопа // Радиотехника и электроника. 2020. Т. 65. № 7.
Volkov M.V., Margaryants N.B., Potemkin A.V., et al. Blood vessel visualization method in human skin based on video recording of blood flow using a laparoscope // J. Commun. Technol. and Electronics. 2020. V. 65. № 7. P. 806–814. https://doi.org/10.1134/S1064226920070141
8. Guryleva A.V., Machikhin A.S., Khokhlov D.D., et al. Feasibility of videocapillaroscopy for characterization of microvascular patterns in skin lesions // Proc. SPIE. The Intern. Soc. Opt. Eng. 2022. P. 12147. https://colab.ws/articles/10.1117%2F12.2621479?ysclid=mbqpm8ir5h453236033#
9. Батшев В.И., Букова В.И., Крюков А.В. и др. Оптическая система компактного дерматоскопа с каналом для видеокапилляроскопии // Оптический журнал. 2023. Т. 90. № 11. С. 124–132. https://doi.org/10.17586/1023-5086-2023-90-11-124-132
Batshev V.I., Bukova V.I., Kryukov A.V., et al. Optical system of a compact dermatoscope with a videocapillaroscopy channel // J. Opt. Technol. 2023. V. 90. № 11. P. 713–718. https://doi.org/10.1364/JOT.90.000713
10. Крюков А.В., Марченко М.О. Модульное мультимодальное устройство для дерматоскопаии и видеокапилляроскопии // Труды XVII междунар. конф. Акустооптические и радиолокационные методы измерений и обработки информации — ARMIMP 2024. Суздаль, Россия. 23–26 сентября 2024. С. 308–312.
Kryukov A.V., Marchenko M.O. Modular multimodal device for dermatoscopy and videocapillaroscopy [in Russian] // XVII Intern. Conf. Acoustooptic and Radar Methods for Information Measurements and Processing — ARMIMP 2024 (Reports). Suzdal, Russia. September 23–26, 2024. P. 308–312.
11. Mullani N., Trotzenberg T., Lozano-Buhl G.P. Medical illuminator with variable polarization // US Patent № US11395714B2. 2022. Publ. July 27, 2022.
12. Heine O., Hager T. Dermatoscope // US Patent № USD940312S. 2022. Publ. Jan. 4, 2022.
13. Togawa Y., Yamamoto Y., Matsue H. Comparison of images obtained using four dermoscope imaging devices: An observational study // JEADV Clinical Practice 2. 2023. № 4. P. 888–892.
14. Панов В.А., Андреев Л.Н. Оптика микроскопов. Расчет и проектирование: уч. пособ. Л.: Машиностроение, 1976. 432 с.
Panov V.A., Andreev L.N. Optics of microscopes. Calculation and design: Tutorial [in Russian]. Leningrad: ''Mashinostroenie'' Publ., 1976. 432 p.
15. Ровенская Т.С., Фролов А.В. Синтез широкоугольного реверсивного телеобъектива // Вестник МГТУ. Сер. Приборостроение. 1997. № 3. С. 115–120.
Rovenskaya T.S., Frolov A.V. Synthesis of a wide-angle reversible telephoto lens [in Russian] // Vestnik BMSTU. 1997. № 3. P. 115–120.
16. Слюсарев Г.Г. Методы расчета оптических систем: уч. пособ. Л.: Машиностроение, 1969. 672 с.
Slusarev G.G. Methods for calculating optical systems: Tutorial [in Russian]. Leningrad: ''Mashinostroenie'' Publ., 1969. 672 p.
17. Русинов М.М. Техническая оптика: уч. пособ. Л.: Машиностроение, 1979. 488 с.
Rusinov M.M. Technical optics: Tutorial [in Russian]. Leningrad: "Mashinostroenie" Publ., 1979. 488 p.
18. Чербаев В.А., Хацевич Т.Н. Специализированный проекционный объектив // «Интерэкспо Гео-Сибирь» 2015. Т. 5. № 2. С. 111–116.
Cherbaev V.A., Khatsevich T.N. Dedicated projection lens [in Russian] // Interexpo Geo Sibir. 2015. V. 5. № 2. P. 111–116.
19. Батшев В.И., Крюков А.В. Расчет миниатюрного реверсивного телеобъектива тепловизионного диапазона // Оптический журнал. 2024. Т. 91. № 7. С. 89–98. http://doi.org/10.17586/1023-5086-2024-91-07-89-98
Batshev V.I., Krioukov A.V. Design of a compact long-wave infrared inverse telephoto lens // J. Opt. Technol. 2024. V. 91. № 7. P. 490–495. https://doi.org/10.1364/JOT.91.000490
20. Андреев Л.Н., Цыганок Е.А., Ежова В.В. и др. Апланатический компенсатор кривизны поверхности изображения // Патент РФ № RU212877U1. Бюл. 2022. № 23.
Andreev L.N., Tsiganok E.A., Ezhova V.V., et al. Aplanatic image surface curvature compensator [in Russian] // RF Patent № RU212877U1. Bull. 2022. № 23.
21. Заказнов Н.П., Кирюшин С.И., Кузичев В.И. Теория оптических систем: уч. пособ., 4-е изд. СПб.: Лань, 2022. 448 с.
Zakaznov N.P., Kiryushin S.I., Kuzichev V.I. Theory of optical systems: Tutorial [in Russian]. St. Petersburg: "Lan’" Publ., 2022. 448 p.
22. Liou H. and Brennan N.A. Anatomically accurate, finite model eye for optical modeling // JOSA A. 1997. V. 14. № 8. P. 1684–1695. https://doi.org/10.1364/JOSAA.14.001684
23. Электронный ресурс URL: https://www.edmundoptics.com/knowledge-center/tech‑tools/1951‑usaf‑resolution/?srsltid=AfmBOopgCFfhuJWYcnjPtQPzGnW6rLdsL73JAEhFHAGVZ3h4HmXbKFAg (1951 USAF Resolution Calculator. Edmund Optics).
Electronic resource URL: https://www.edmundoptics.com/knowledge-center/tech tools/1951–usaf–resolution/?srsltid=AfmBOopgCFfhuJWYcnjPtQPzGnW6rLdsL73JAEhFHAGVZ3h4HmXbKFAg (1951 USAF Resolution Calculator. Edmund Optics).
24. Электронный ресурс URL: https://sourceforge.net/p/mtfmapper/home/Home/ (MTF Mapper).
Electronic resource URL: https://sourceforge.net/p/mtfmapper/home/Home/ (MTF Mapper).
ru