DOI: 10.17586/1023-5086-2026-93-01-12-22
УДК: 681.7.063,068 + 531.781.2.087.92
A comparative study of digital image correlation, strain gauge, and extensometer for calibration of fiber Bragg grating sensors
Pashaie R., Mirzaei A.H., Vahedi M., Shokrieh M.M. A comparative study of digital image correlation, strain gauge, and extensometer for calibration of fiber Bragg grating sensors (Сравнительное исследование калибровки волоконных датчиков с брэгговской решеткой с помощью тензометрического датчика и экстензометра с использованием метода цифровой корреляции изображений) [in English] // Оптический журнал. 2026. Т. 93. № 1. С. 12–22. http://doi.org/10.17586/1023-5086-2026-93-01-12-22
Pashaie R., Mirzaei A.H., Vahedi M., Shokrieh M.M. A comparative study of digital image correlation, strain gauge, and extensometer for calibration of fiber Bragg grating sensors // Opticheskii Zhurnal. 2026. V. 93. № 1. P. 12–22. http://doi.org/10.17586/1023-5086-2026-93-01-12-22
Subject of study. A method for calibrating temperature sensors and stress sensors based on fiber Bragg grating sensors. Purpose of the work. Comparison of the efficiency of various sensor calibration methods, in particular hardware-based methods based on strain gauges with a sensitive element in the form of a metal foil, an extensometric device, and software-based methods based on the correlation of recorded digital images. Method. The strain calibration experiments were conducted on metallic and laminated carbon/epoxy specimens in four monotonic tensile tests. Additionally, the temperature calibration for fiber Bragg grating sensors was carried out using a controlled oven. Main results. The digital image correlation method showed greater deviation than the other methods, which could be due to the lower sensitivity of this method to such a range of strains in this special test. The results show remarkable conformity between fiber Bragg grating sensors and strain gauge data. The strain and temperature sensitivities of 0.85 pm/µe and 11.9 pm/degree are obtained for the used sensors, respectively. Practical significance. Calibration of fiber Bragg grating sensors, before installing and embedding into the structures, to temperature and strain using a reliable method has always been one of the concerns of active researchers in this field. This article has compared mechanical and optical methods in the same tests.
calibration, fiber Bragg grating, strain gauge, extensometer, digital image correlation method, strain, temperature
OCIS codes: 060.2370, 060.4370, 060.2300
References:1. Anas M., Nasir M.A., Asfar Z., et al. Structural health monitoring of GFRP laminates using graphene-based smart strain gauges // J. Brazilian Soc. Mechanical Sci. and Eng. 2018. V. 40. P. 1–10. https://doi.org/10.1007/s40430-018-1320-4
2. Salehi S.D., Rastak M.A., Shokrieh M.M., et al. Full-field measurement of residual stresses in composite materials using the incremental slitting and digital image correlation techniques // Experimental Mechanics. 2020. V. 60. № 9. P. 1239–1250. https://doi.org/10.1007/s11340-020-00640-2
3. Abbas Saqlain, Fucai Li, and Jianxi Qiu. A review on SHM techniques and current challenges for characteristic investigation of damage in composite material components of aviation industry // Materials Performance and Characterization. 2018. V. 7. № 1. P. 224–258. https://doi.org/10.1520/MPC20170167
4. Malakzadeh A., Pashaie R., Mansoursamaei M. 150 km φ-OTDR sensor based on erbium and Raman amplifiers // Opt. and Quant. Electron. 2020. V. 52. № 6. P. 1–8. https://doi.org/10.1007/s11082-020-02439-w
5. Pashaie R., Mirzaei A.H., Vahedi M., et al. Discrimination between the strain and temperature effects of a cantilever beam using one uniform FBG sensor // Opt. and Quant. Electron. 2023. V. 55. № 2. P. 1–15. https://doi.org/10.1007/s11082-022-04428-7
6. Jinachandran S., Rajan G. Fibre Bragg grating based acoustic emission measurement system for structural health monitoring applications // Materials. 2021. V. 14. № 4. P. 897. https://doi.org/10.3390/ma14040897
7. Chen M.Q., He T.Y., Zhao Y., et al. Ultra-short phase-shifted fiber Bragg grating in a microprobe for refractive index sensor with temperature compensation // Opt. & Laser Technol. 2023. V. 157. P. 108672. https://doi.org/10.1016/j.optlastec.2022.108672
8. Cheng L., Tong X., Wei J., et al. Highly accurate differential pressure FBG gas flow sensor // Opt. Fiber Technol. 2023. V. 75 P. 103189. http://dx.doi.org/10.2139/ssrn.4148315
9. Liu Q., Wang C., Liu W., et al. Large-range and high-sensitivity fiber optic temperature sensor based on Fabry–Pérot interferometer combined with FBG // Opt. Fiber Technol. 2022. V. 68. P. 102794. https://doi.org/10.1016/j.yofte.2021.102794
10. Sah R.K., Kumar A., Gautam A., et al. Temperature independent FBG based displacement sensor for crack detection in civil structures // Opt. Fiber Technol. 2022. V. 74. P. 103137. https://doi.org/10.1016/j.yofte.2022.103137
11. Raghuwanshi S.K., Kumar M. Highly dispersion tailored properties of few mode fiber Bragg grating-based vibration sensor due to a perturbed apodization profile // Opt. Eng. 2018. V. 57. № 5. P. 057105–057105. https://doi.org/10.1117/1.OE.57.5.057105
12. Rastak M.A., Shokrieh M.M., Barrallier L., et al. Estimation of residual stresses in polymer-matrix composites using digital image correlation // In Residual Stresses in Composite Materials. 2021. P. 455–486. https://doi.org/10.1016/B978-0-12-818817-0.00001-9
13. Bárnik F., Sága M., Vaško M., et al. Measurement and comparison study of deformation using extensometer and 2D DIC technology // In IOP Conf. Series: Materials Science and Engineering. 2020. V. 776. № 1. P. 012065. http://doi.org/10.1088/1757-899X/776/1/012065
14. Babaeeian M., Mohammadimehr M. Experimental and computational analyses on residual stress of composite plate using DIC and Hole-drilling methods based on Mohr's circle and considering the time effect // Opt. and Lasers in Eng. 2021. V. 137. № 1. P. 106355. https://doi.org/10.1016/j.optlaseng.2020.106355
15. Yan S., Zhang J., Sun B., et al. In situ measurement of strains at different locations in 3-D braided composites with FBG sensors // Composite Structures. 2019. V. 230. P. 111527. https://doi.org/10.1016/j.compstruct.2019.111527
16. Pereira G., Frias C., Faria H., et al. On the improvement of strain measurements with FBG sensors embedded in unidirectional composites // Polymer Testing. 2013. V. 32. № 1. P. 99–105. https://doi.org/10.1016/j.polymertesting.2012.09.010
17. Li Ruiya., Yiyang Chen., Yuegang Tan, et al. Sensitivity enhancement of FBG-based strain sensor // Sensors. 2018. V. 18. № 5. P. 1607. https://doi.org/10.3390/s18051607
18. Roths J., Wilfert A., Kratzer P., et al. Strain calibration of optical FBG-based strain sensors // 4th European Workshop on Optical Fibre Sensors. 2010. V. 765. P. 103–106. https://doi.org/10.1117/12.866428
19. Zahmatkesh F., Osman M.H., Talebi E., et al. Experimental study on the performance of slant end-plate connections at elevated temperature // Advanced Steel Construction. 2018. V. 14. № 1. P. 57–72. http://doi.org/10.18057/IJASC.2018.14.1.4
20. Kim Y.H., Parinov I.A., Chang S.H., et al. Physics and mechanics of new materials and their applications // Appl. Sci. 2022. V. 12. № 18. P. 9336. http://doi.org/10.1142/978919807727-fmatter
ru