ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

DOI: 10.17586/1023-5086-2026-93-01-12-22

УДК: 681.7.063,068 + 531.781.2.087.92

A comparative study of digital image correlation, strain gauge, and extensometer for calibration of fiber Bragg grating sensors

For Russian citation (Opticheskii Zhurnal):

Pashaie R., Mirzaei A.H., Vahedi M., Shokrieh M.M. A comparative study of digital image correlation, strain gauge, and extensometer for calibration of fiber Bragg grating sensors (Сравнительное исследование калибровки волоконных датчиков с брэгговской решеткой с помощью тензометрического датчика и экстензометра с использованием метода цифровой корреляции изображений) [in English] // Оптический журнал. 2026. Т. 93. № 1. С. 12–22. http://doi.org/10.17586/1023-5086-2026-93-01-12-22

Pashaie R., Mirzaei A.H., Vahedi M., Shokrieh M.M. A comparative study of digital image correlation, strain gauge, and extensometer for calibration of fiber Bragg grating sensors // Opticheskii Zhurnal. 2026. V. 93. № 1. P. 12–22. http://doi.org/10.17586/1023-5086-2026-93-01-12-22

For citation (Journal of Optical Technology):
-
Abstract:

Subject of study. A method for calibrating temperature sensors and stress sensors based on fiber Bragg grating sensors. Purpose of the work. Comparison of the efficiency of various sensor calibration methods, in particular hardware-based methods based on strain gauges with a sensitive element in the form of a metal foil, an extensometric device, and software-based methods based on the correlation of recorded digital images. Method. The strain calibration experiments were conducted on metallic and laminated carbon/epoxy specimens in four monotonic tensile tests. Additionally, the temperature calibration for fiber Bragg grating sensors was carried out using a controlled oven. Main results. The digital image correlation method showed greater deviation than the other methods, which could be due to the lower sensitivity of this method to such a range of strains in this special test. The results show remarkable conformity between fiber Bragg grating sensors and strain gauge data. The strain and temperature sensitivities of 0.85 pm/µe and 11.9 pm/degree are obtained for the used sensors, respectively. Practical significance. Calibration of fiber Bragg grating sensors, before installing and embedding into the structures, to temperature and strain using a reliable method has always been one of the concerns of active researchers in this field. This article has compared mechanical and optical methods in the same tests.

Keywords:

calibration, fiber Bragg grating, strain gauge, extensometer, digital image correlation method, strain, temperature

OCIS codes: 060.2370, 060.4370, 060.2300

References:

1. Anas M., Nasir M.A., Asfar Z., et al. Structural health monitoring of GFRP laminates using graphene-based smart strain gauges // J. Brazilian Soc. Mechanical Sci. and Eng. 2018. V. 40. P. 1–10. https://doi.org/10.1007/s40430-018-1320-4

2.  Salehi S.D., Rastak M.A., Shokrieh M.M., et al. Full-field measurement of residual stresses in composite materials using the incremental slitting and digital image correlation techniques // Experimental Mechanics. 2020. V. 60. № 9. P. 1239–1250. https://doi.org/10.1007/s11340-020-00640-2

3.  Abbas Saqlain, Fucai Li, and Jianxi Qiu. A review on SHM techniques and current challenges for characteristic investigation of damage in composite material components of aviation industry // Materials Performance and Characterization. 2018. V. 7. № 1. P. 224–258. https://doi.org/10.1520/MPC20170167

4. Malakzadeh A., Pashaie R., Mansoursamaei M. 150 km φ-OTDR sensor based on erbium and Raman amplifiers // Opt. and Quant. Electron. 2020. V. 52. № 6. P. 1–8. https://doi.org/10.1007/s11082-020-02439-w

5.  Pashaie R., Mirzaei A.H., Vahedi M., et al. Discrimination between the strain and temperature effects of a cantilever beam using one uniform FBG sensor // Opt. and Quant. Electron. 2023. V. 55. № 2. P. 1–15. https://doi.org/10.1007/s11082-022-04428-7

6. Jinachandran S., Rajan G. Fibre Bragg grating based acoustic emission measurement system for structural health monitoring applications // Materials. 2021. V. 14. № 4. P. 897. https://doi.org/10.3390/ma14040897

7. Chen M.Q., He T.Y., Zhao Y., et al. Ultra-short phase-shifted fiber Bragg grating in a microprobe for refractive index sensor with temperature compensation // Opt. & Laser Technol. 2023. V. 157. P. 108672. https://doi.org/10.1016/j.optlastec.2022.108672

8.  Cheng L., Tong X., Wei J., et al. Highly accurate differential pressure FBG gas flow sensor // Opt. Fiber Technol. 2023. V. 75 P. 103189. http://dx.doi.org/10.2139/ssrn.4148315

9.  Liu Q., Wang C., Liu W., et al. Large-range and high-sensitivity fiber optic temperature sensor based on Fabry–Pérot interferometer combined with FBG // Opt. Fiber Technol. 2022. V. 68. P. 102794. https://doi.org/10.1016/j.yofte.2021.102794

10. Sah R.K., Kumar A., Gautam A., et al. Temperature independent FBG based displacement sensor for crack detection in civil structures // Opt. Fiber Technol. 2022. V. 74. P. 103137. https://doi.org/10.1016/j.yofte.2022.103137

11. Raghuwanshi S.K., Kumar M. Highly dispersion tailored properties of few mode fiber Bragg grating-based vibration sensor due to a perturbed apodization profile // Opt. Eng. 2018. V. 57. № 5. P. 057105–057105. https://doi.org/10.1117/1.OE.57.5.057105

12. Rastak M.A., Shokrieh M.M., Barrallier L., et al. Estimation of residual stresses in polymer-matrix composites using digital image correlation // In Residual Stresses in Composite Materials. 2021. P. 455–486. https://doi.org/10.1016/B978-0-12-818817-0.00001-9

13. Bárnik F., Sága M., Vaško M., et al. Measurement and comparison study of deformation using extensometer and 2D DIC technology // In IOP Conf. Series: Materials Science and Engineering. 2020. V. 776. № 1. P. 012065. http://doi.org/10.1088/1757-899X/776/1/012065

14. Babaeeian M., Mohammadimehr M. Experimental and computational analyses on residual stress of composite plate using DIC and Hole-drilling methods based on Mohr's circle and considering the time effect // Opt. and Lasers in Eng. 2021. V. 137. № 1. P. 106355. https://doi.org/10.1016/j.optlaseng.2020.106355

15. Yan S., Zhang J., Sun B., et al. In situ measurement of strains at different locations in 3-D braided composites with FBG sensors // Composite Structures. 2019. V. 230. P. 111527. https://doi.org/10.1016/j.compstruct.2019.111527

16. Pereira G., Frias C., Faria H., et al. On the improvement of strain measurements with FBG sensors embedded in unidirectional composites // Polymer Testing. 2013. V. 32. № 1. P. 99–105. https://doi.org/10.1016/j.polymertesting.2012.09.010

17. Li Ruiya., Yiyang Chen., Yuegang Tan, et al. Sensitivity enhancement of FBG-based strain sensor // Sensors. 2018. V. 18. № 5. P. 1607. https://doi.org/10.3390/s18051607

18. Roths J., Wilfert A., Kratzer P., et al. Strain calibration of optical FBG-based strain sensors // 4th European Workshop on Optical Fibre Sensors. 2010. V. 765. P. 103–106. https://doi.org/10.1117/12.866428

19. Zahmatkesh F., Osman M.H., Talebi E., et al. Experimental study on the performance of slant end-plate connections at elevated temperature // Advanced Steel Construction. 2018. V. 14. № 1. P. 57–72. http://doi.org/10.18057/IJASC.2018.14.1.4

20. Kim Y.H., Parinov I.A., Chang S.H., et al. Physics and mechanics of new materials and their applications // Appl. Sci. 2022. V. 12. № 18. P. 9336. http://doi.org/10.1142/978919807727-fmatter