DOI: 10.17586/1023-5086-2026-93-01-23-33
УДК: 543.42, 548.5, 621.315.592
The peculiarities of boron concentration determination in doped diamond structures by Fourier transform infrared spectroscopy
Соломникова А.В., Телицын Н.С., Клепиков И.В., Панов М.Ф., Зубков В.И., Соломонов А.В. Особенности измерения концентрации бора в легированных алмазных структурах методом фурье-спектроскопии в инфракрасной области спектра // Оптический журнал. 2026. Т. 93. № 1. С. 23–33. http://doi.org/10.17586/1023-5086-2026-93-01-23-33
Solomnikova A.V., Telitsyn N.S., Klepikov I.V., Panov M.F., Zubkov V.I., Solomonov A.V. The peculiarities of boron concentration determination in doped diamond structures by Fourier transform infrared spectroscopy [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 1. P. 23–33. http://doi.org/10.17586/1023-5086-2026-93-01-23-33
Study Subject. Single-crystal diamond plates and homoepitaxial diamond structures doped with boron. Purpose of the work. Development of correct method determination of the concentration of uncompensated boron impurity in homogeneously doped homoepitaxial diamond layers by infrared absorption spectra. Method. Examination of diamond structures using Fourier transform infrared spectroscopy. Main results. A detailed analysis of the correctness of Fourier transform infrared spectroscopy for the boron impurity concentration in diamond for a wide doping range has been carried out. A two-stage technique for assessment of concentration of uncompensated boron impurity in homoepitaxial layers is proposed. At the first stage, the thickness of the epitaxial layer is calculated from the reflectance spectrum, and at the second stage, the optical density spectra are analyzed with a separate consideration of the lattice absorption region and the part of the spectrum responsible for absorption by boron atoms. The developed software was used for accurate determination of boron concentration in bulk samples and in epitaxial diamond layers. Practical significance. The proposed method for concentration determination in boron-doped epitaxial diamond layers makes it possible to precisely determine the concentration of impurity in complex homoepitaxial diamond structures, which are the basis for photonic, opto- and microelectronic devices. The developed software is suitable for implementation in laboratory research and technological process for primary nondestructive evaluation of impurity concentration in synthesized diamond single crystals.
single-crystal diamond, Fourier transform infrared spectroscopy, boron doping, optical absorption
Acknowledgements:the study was done with a support of the state assignment for Saint Petersburg Electrotechnical University “LETI” (Theme № FSEE-2025-0007).
OCIS codes: 160.4670, 300.6340, 160.6000
References:1. Афанасьев И.М., Зоткин И.А. Сравнение характеристик “солнечно-слепых” приемников ионизирующего излучения // Оптический журнал. 2005. Т. 72. № 8 С. 68–70.
Afanas'ev I.M., Zotkin I.A. Comparison of the characteristics of solar-blind detectors of ionizing radiation // J. Opt. Technol. 2005. V. 72. № 8. P. 634–636. https://doi.org/10.1364/JOT.72.000634
2. Zaitsev A.M. Optical properties of diamond: A data handbook. Berlin, Heidelberg: Springer, 2001, 502 p. https://doi.org/10.1007/978-3-662-04548-0
3. Vins V.G., Pestryakov E.V. Color centers in diamond crystals: Their potential use in tunable and femtosecond lasers // Diam. Relat. Mater. 2006. V. 15. P. 569–571. https://doi.org/10.1016/j.diamond.2005.11.038
4. Ruf M., Wan N.H., Choi H., et al. Quantum networks based on color centers in diamond // J. Appl. Phys. 2021. V. 130. P. 1–20. https://doi.org/10.1063/5.0056534
5. Stürner F.M., Brenneis A., Buck T., et al. Integrated and portable magnetometer based on nitrogen-vacancy ensembles in diamond // Adv. Quantum Technol. 2021. V. 4. P. 2000111 https://doi.org/10.1002/qute.202000111
6. Solomnikova A., Yakovlev G., Klepikov I., et al. Nondestructive morphology and impurity content study of the large-sized high-pressure high-temperature single-crystal multisectoral IIb diamond plate for microelectronic applications // Phys. Status Solidi — Rapid Res. Lett. 2025. V. 19. № 5. P. 2400393. https://doi.org/10.1002/pssr.202400393
7. Clark C.D., Ditchburn R.W., Dyer H.B. The absorption spectra of natural and irradiated diamonds // Proc. R. Soc. London. Ser. A. Math. Phys. Sci. 1956. V. 234. P. 363–381. https://doi.org/10.1098/rspa.1956.0040
8. Walker J. Optical absorption and luminescence in diamond // Reports Prog. Phys. 1979. V. 42. P. 1605–1659. https://doi.org/10.1088/0034-4885/42/10/001
9. Breeding C., Shigley J. The “type” classification system of diamonds and its importance in gemology // Gems Gemol. 2009. V. 45. P. 96–111. https://doi.org/10.5741/GEMS.45.2.96
10. Суровегина Е.А., Демидов Е.В., Дроздов М.Н. и др. Атомный состав и электрофизические характеристики эпитаксиальных слоев CVD алмаза, легированных бором // Физика и техника полупроводников. 2016. T. 50. C. 1595.
Surovegina E.A., Demidov E.V., Drozdov M.N., et al. Atomic composition and electrical characteristics of epitaxial CVD diamond layers doped with boron // Semiconductors 2016. V. 50(12). P. 1569–1573. https://doi.org/10.1134/S1063782616120204
11. King J.M., Moses T.M., Shigley J.E., et al. Characterizing natural-color type IIb blue diamonds // Gems Gemol. 1998. V. 34. P. 246–268. https://doi.org/10.5741/GEMS.34.4.246
12. Лебедев В.Ф. Анализ секториальных пластин синтетических HPHT-алмазов методом лазерно-искровой эмиссионной спектроскопии с учётом подобия процессов абляции // Оптический журнал. 2024. Т. 91. № 12. С. 91–98. http://doi.org/10.17586/1023-5086-2024-91-12-91-98
Lebedev V.F. Analysis of sectorial plates of synthetic HPHT diamonds by laser induced breakdown spectroscopy with consideration of similarity of ablation processes // J. Opt. Technol. 2024. V. 91. № 12. Р. 831–835. https://doi.org/10.1364/JOT.91.000831
13. Collins A.T., Williams A.W.S. The nature of the acceptor centre in semiconducting diamond // J. Phys. C. Solid State Phys. 1971. V. 4. P. 1789–1800. https://doi.org/10.1088/0022-3719/4/13/030
14. Howell D., Collins A.T., Loudin L.C., et al. Automated FTIR mapping of boron distribution in diamond // Diam. Relat. Mater. 2019. V. 96. P. 207–215. https://doi.org/10.1016/j.diamond.2019.02.029
15. Zubkov V., Solomnikova A., Koliadin A., et al. Analysis of doping anisotropy in multisectorial boron-doped HPHT diamonds // Mater. Today Commun. 2020. V. 24 P. 100995. https://doi.org/10.1016/j.mtcomm.2020.100995
16. Collins A.T. Intrinsic and extrinsic absorption and luminescence in diamond // Physica B: Condensed Matter. 1993. V. 185. P. 284–296. https://doi.org/10.1016/0921-4526(93)90250-A
17. Thomas M.E., Tropf W.J. Optical properties of diamond // Johns Hopkins APL Tech. Dig. 1993. V. 14. P. 16–23. https://doi.org/10.1201/9780429283260-7
18. Ţucureanu V., Matei A., Avram A.M. FTIR spectroscopy for carbon family study // Crit. Rev. Anal. Chem. 2016. V. 46. P. 502–520. https://doi.org/10.1080/10408347.2016.1157013
19. Wemple S.H., Seman J.A. Optical transmission through multilayered structures // Appl. Opt. 1973. V. 12. P. 2947. https://doi.org/10.1364/ao.12.002947
20. Афанасьев А.В., Зубков В.И., Ильин В.А. и др. Определение толщин и особенностей легирования многослойных 4H-SiC-структур методом частотного анализа инфракрасных спектров отражения // Письма в ЖТФ. 2022. T. 48. № 2. C. 34–36. https://doi.org/10.21883/pjtf.2022.02.51919.19012
Afanasyev A.V., Zubkov V.I., Ilyin V.A., et al. Determination of thickness and doping features of multilayer 4H–SiC structures by frequency analysis of IR reflection spectra // Technical Phys. Lett. 2022. V. 48. № 2. P. 34–36.
ru