DOI: 10.17586/1023-5086-2026-93-01-3-11
УДК: 621.373.826, 535.8, 535-15
Portable source of powerful short pulses at wavelength 532 nm based on Nd:YAG/Cr:YAG crystal microchip laser pumped by array of multiwavelength laser diodes
Яковин М.Д., Яковин Д.В., Грибанов А.В., Кораблин П.Д., Латкин Н.И., Кутикова О.Ю., Молодых Л.С., Молодых М.В., Старынин М.Ю., Панарин В.А. Портативный источник мощных коротких импульсов на длине волны 532 нм на основе микрочип-лазера на кристалле YAG:Nd/YAG:Cr с накачкой массивом мультиволновых лазерных диодов // Оптический журнал. 2026. Т. 93. № 1. С. 3–11. http://doi.org/10.17586/1023-5086-2026-93-01-3-11
Yakovin M.D., Yakovin D.V., Gribanov A.V., Korablin P.D., Latkin N.I., Kutikova O.Yu., Molodykh L.S., Molodykh M.V., Starynin M.Yu., Panarin V.A. Portable source of powerful short pulses at wavelength 532 nm based on Nd:YAG/Cr:YAG crystal microchip laser pumped by array of multiwavelength laser diodes // Opticheskii Zhurnal. 2026. V. 93. № 1. P. 3–11. http://doi.org/10.17586/1023-5086-2026-93-01-3-11
Subject of the Study. Second harmonic generation from an experimental microchip laser sample developed previously and improved in the presented work. Objective. To obtain second harmonic generation from a compact microchip laser with high peak power and pulse energy. Method. Increased nonlinear optical conversion efficiency was achieved due to the high peak power of laser radiation. Directly coatings of cavity mirrors to the ends of the active element simplified the design. A multiwavelength laser diodes array was used as a pump source. To enhance the efficiency, an optical collimation system for pump radiation was employed, converting its divergences in orthogonal cross sections into values of the same order. Main Results. Second harmonic generation (532 nm) with a conversion efficiency of 32% was obtained for a Nd:YAG/Cr:YAG microchip laser operating without thermal stabilization system. The pulses with highly stable amplitudes were obtained, with energies of 5 mJ at 1064 nm and 1.6 mJ at 532 nm. Multipulse generation modes were identified with increasing pump pulse duration. Practical significance. The obtained results enable the development of a series of portable sources of high-power short pulses from the spectrum optical ranges for use in materials processing, spectroscopy, optical location, atmospheric sensing, and the study of new nonlinear optical materials.
microchip laser, Nd:YAG laser, passive Q-switching, Cr:YAG, diode pumping, frequency conversion
Acknowledgements:the authors express their deep gratitude to Sergei L. Mikerin, Senior Researcher at the Institute of Archaeology and Electrochemistry SB RAS, PhD (Physics and Mathematics), for useful discussions and assistance in working on the text.
OCIS codes: 140.3530, 140.3480, 140.3540, 190.2620
References:1. Zayhowski J.J., Dill C. Diode-pumped passively Q-switched picosecond microchip lasers // Opt. Lett. 1994. V. 19. № 18. P. 1427–1429. https://doi.org/10.1364/OL.19.001427
2. Zayhowski J.J. Ultraviolet generation with passively Q-switched microchip lasers // Opt. Lett. 1996. V. 21. № 8. P. 588–590. https://doi.org/10.1364/OL.21.000588
3. Zayhowski J.J. Periodically poled lithium niobate optical parametric amplifiers pumped by high-power passively Q-switched microchip lasers // Opt. Lett. 1997. V. 22. № 3. P. 169–171. https://doi.org/10.1364/OL.22.000169
4. Zayhowski J.J., Wilson A.L. Pump-induced bleaching of the saturable absorber in short-pulse Nd:YAG/Cr/sup 4+:YAG passively Q-switched microchip lasers // IEEE J. Quant. Electron. 2003. V. 39. № 12. P. 1588–1593. https://doi.org/10.1109/JQE.2003.819535
5. Sakai H., Kan H., Taira T. > 1 MW peak power single-mode high-brightness passively Q-switched Nd3+:YAG microchip laser // Opt. Exp. 2008. V. 16. № 24. P. 19891–19899. https://doi.org/10.1364/OE.16.019891
6. Wang Y., Gong M., Yan P., et al. Stable polarization short pulse passively Q-switched monolithic microchip laser with [110] cut Cr4+:YAG // Laser Phys. Lett. 2009. V. 6. № 11. P. 788. https://doi.org/10.1002/lapl.200910079
7. Hou D., Yin X., Wang J., et al. High power multiple wavelength diode laser stack for DPSSL application without temperature control // Proc. SPIE. 2018. V. 10513. P. 167–178. https://doi.org/10.1117/12.2291169
8. Яковин М.Д., Яковин Д.В., Грибанов А.В. Компактный мощный субнаносекундный микрочип-лазер на кристалле Nd:YAG/Cr:YAG, работающий без системы термостабилизации // Оптический журнал. 2023. Т. 90. № 12. С. 14–23. http://doi.org/10.17586/1023-5086-2023-90-12-14-23 Yakovin M., Yakovin D., Gribanov A. Compact powerful subnanosecond microchip laser based on Nd:YAG/Cr:YAG crystal operating without a thermal stabilization system // J. Opt. Technol. 2023. V. 90. № 12. P. 725–729. https://doi.org/10.1364/JOT.90.000725
9. Bhandari R., Taira T. > 6 MW peak power at 532 nm from passively Q-switched Nd:YAG/Cr4+:YAG microchip laser // Opt. Exp. 2011. V. 19. № 20. P. 19135–19141. https://doi.org/10.1364/OE.19.019135
10. Bhandari R., Taira T., Miyamoto A., et al. > 3 MW peak power at 266 nm using Nd:YAG/Cr4+:YAG microchip laser and fluxless-BBO // Opt. Mater. Exp. 2012. V. 2. № 7. P. 907–913. https://doi.org/10.1364/OME.2.000907
11. Tunna L., Kearns A., O’Neill W., et al. Micromachining of copper using Nd:YAG laser radiation at 1064, 532, and 355 nm wavelengths // Opt. & Laser Technol. 2001. V. 33. № 3. P. 135–143. https://doi.org/10.1016/S0030-3992(00)00126-2
12. Jackson M.J., O’neill W. Laser micro-drilling of tool steel using Nd:YAG lasers // J. Mater. Proc. Technol. 2003. V. 142. № 2. P. 517–525. https://doi.org/10.1016/S0924-0136(03)00651-4
13. Parow-Souchon K., Cuadrado-Calle D., Rea S., et al. Optimization of spaceflight millimeter-wave impedance matching networks using laser trimming // Intern. J. Microwave and Wireless Technol. 2022. V. 14. № 1. P. 1–7. https://doi.org/10.1017/S1759078721000180
14. Yamaguchi K. Development of LCR laser function trimming unit // Proc. 1995 Japan Intern. Electronic Manufacturing Technol. Symp. IEEE, 1995. P. 283–286. https://doi.org/10.1109/IEMT.1995.541045
15. Zayhowski J.J. Passively Q-switched microchip lasers and applications // J. Alloys and Compounds. 2000. V. 303–304. P. 393–400. https://doi.org/10.1016/S0925-8388(00)00647-2
16. Koechner W. Solid-state laser engineering. Springer, 2006. 765 p.
17. Салех Б., Тейх М. Оптика и фотоника принципы и применения. Т. 2 / 2-е изд. Пер. Дербова В.Л. Долгопрудный: Изд. дом «Интеллект», 2012. 784 c. Saleh B.E.A., Teich M.C. Fundamentals of photonics. 2d ed. John Wiley & Sons, 2007. 1200 p.
18. Травина Е.С., Дормидонов А.Е. Лазерные диодные решетки высокой плотности мощности для накачки твердотельных лазеров в широком спектральном диапазоне // Краткие сообщения по физике ФИАН. 2021. № 4. С. 36–41.
Travina E.S., Dormidonov A.E. High power density laser diode arrays for solid state laser pump in a wide temperature range // Bulletin of the Lebedev Physics Institute. 2021. V. 48. № 4. P. 119–122.
ru