DOI: 10.17586/1023-5086-2026-93-01-80-86
УДК: 535-7
Single photon source based on CdSe/CdS/ZnS quantum dots on silicon nitride waveguides
Касимов Р.Х., Аржанов А.И., Седых К.О., Голиков А.Д., Галанова В.С., Гладуш Ю.Г., Ковалюк В.В., Наумов А.В., Гольцман Г.Н. Источник одичночных фотонов с использованием коллоидных квантовых точек CdSe/CdS/ZnS на волноводах из нитрида кремния // Оптический журнал. 2026. Т. 93. № 1. С. 80–86. http://doi.org/10.17586/1023-5086-2026-93-01-80-86
Kasimov R.Kh., Arzhanov A.I., Sedykh K.O., Golikov A.D., Galanova V.S., Gladush Y.G., Kovalyuk V.V., Naumov A.V., Goltsman G.N. Single photon source based on CdSe/CdS/ZnS quantum dots on silicon nitride waveguides [in Russian] // Opticheskii Zhurnal. V. 93. 2026. № 1. P. 80–86. http://doi.org/10.17586/1023-5086-2026-93-01-80-86
Scope of research. Using the drop-cast method for single-photon source fabrication. The purpose of the work. Development of a technological process for single-photon sources. Method. In the first stage we calculate the period and the fill-factor of the grating couplers for the two wavelengths: 545 and 600 nm. In the second stage to manufacture the chip design we use Python programming language. In the third stage, electron beam lithography is used to manufacture the chip. In the fourth stage, quantum dots were placed using the drop-cast method. Main results. The technological process for single-photon source has been developed. The position of quantum dots on the chip was determined and their spectral characteristics were measured. The obtained data will be used to improve the placement accuracy and increase the probability of individual quantum dot deposition. Practical significance. The proposed technological process can be used to create single-photon sources using quantum dots in photonic integrated circuits, which opens possibilities for various applications in the field of quantum technologies.
integrated optics, quantum dots, photon emission, single photon source
Acknowledgements:the study was supported by the Ministry of Science and Higher Education of the Russian Federation FSME-2022-0008 (manufacturing), as well as the Russian Science Foundation № 23-79-00056 (numerical modeling and experimental research).
OCIS codes: 130.0130, 130.3120, 250.5230
References:1. Eisaman M.D., Fan J., Migdall A., et al. Invited review article: Single-photon sources and detectors // Rev. Scientific Instruments. 2011. V. 82. № 7. P. 071101. https://doi.org/10.1063/1.3610677
2. Aharonovich I., Englund D., Toth M. Solid-state single-photon emitters // Nature Photonics. 2016. V. 10. № 10. P. 631–641. https://doi.org/10.1038/nphoton. 2016.186
3. Aharonovich I., Neu E. Diamond nanophotonics // Advanced Opt. Mater. 2014. V. 2. № 10. P. 911–928. https://doi.org/10.1002%2Fadom.201400189
4. He Y.M., Clark G., Schaibley J.R., et al. Single quantum emitters in monolayer semiconductors // Nature Nanotechnol. 2015. V. 10. № 6. P. 497–502. https://doi.org/10.1038%2Fnnano.2015.75
5. Xuedan M., Hartmann N.F., Baldwin J., et al. Room-temperature single-photon generation from solitary dopants of carbon nanotubes // Nature Nanotechnol. 2015. V. 10. № 8. P. 671–675. https://doi.org/ 10.1038/nnano.2015.136
6. Hogele A., Galland C., Winger M., et al. Photon antibunching in the photoluminescence spectra of a single carbon nanotube // Phys. Rev. Lett. 2008. V. 100. № 21. P. 217401. https://doi.org/10.1103/PhysRevLett.100.217401
7. Jeantet A., Chassagneux Y., Raynaud C., et al. Widely tunable single-photon source from a carbon nanotube in the Purcell regime // Phys. Rev. Lett. 2016. V. 116. № 24. P. 247402. https://doi.org/10.1103/PhysRevLett.116.247402
8. Santori C., Pelton M., Solomon G., et al. Triggered single photons from a quantum dot // Phys. Rev. Lett. 2001. V. 86. № 8. P. 1502–1505. https://doi.org/10.1103/PhysRevLett.86.1502
9. Dory C., Fischer K.A., Müller K., et al. Complete coherent control of a quantum dot strongly coupled to a nanocavity // Sci. Rep. 2016. V. 6. № 1. P. 25172. https://doi.org/10.48550/arXiv.1512.05952
10. Gazzano O., Michaelis de Vasconcellos S., Arnold C., et al. Bright solid-state sources of indistinguishable single photons // Nature Commun. 2013. V. 4. № 1. P. 1425. 10.1038/ncomms2434
11. Eich A., Spiekermann T., Gehring H., et al. Single photon emission from individual nanophotonic-integrated colloidal quantum dots // ACS Photonics. 2022. V. 9. № 2. P. 551–558. https://doi.org/10.1021/acsphotonics.1c01493
12. Deka S., Quarta A., Lupo M.G., et al. CdSe/CdS/ZnS double shell nanorods with high photoluminescence efficiency and their exploitation as biolabeling probes // J. American Chem. Soc. 2009. V. 131. № 8. P. 2948–2958. https://doi.org/10.1021/ja808369e
13. Talapin D.V., Mekis I., Götzinger S., et al. CdSe/CdS/ZnS and CdSe/ZnSe/ZnS core–shell — shell nanocrystals // J. Phys. Chem. B. 2004. V. 108. № 49. P. 18826–18831. https://doi.org/10.1021/jp046481g
14. Lim S.J., Chon B., Joo T., et al. Synthesis and characterization of zinc-blende CdSe-based core/shell nanocrystals and their luminescence in water // J. Phys. Chem. C. 2008. V. 112. № 6. P. 1744–1747. https://doi.org/10.1021/jp710648g
ru