DOI: 10.17586/1023-5086-2026-93-01-87-94
УДК: 538.971
Formation, growth and dynamics of the etchant phase on preforms during production of lensed optical fiber
Корнилин Д.А., Демин В.А., Пономарев Р.С., Шешуков Д.В., Осовецкий Б.М. Образование, рост и динамика фазы травителя на заготовках при производстве линзованного оптического волокна // Оптический журнал. 2026. Т. 93. № 1. С. 87–94. http://doi.org/10.17586/1023-5086-2026-93-01-87-94
Kornilin D.A., Demin V.A., Ponomarev R.S., Sheshukov D.V., Osovetskiy B.M. Formation, growth and dynamics of the etchant phase on preforms during production of lensed optical fiber [in Russian] // Opticheskii Zhurnal. 2026. V. 93. № 1. P. 87–94. http://doi.org/10.17586/1023-5086-2026-93-01-87-94
Scope of research is the droplet formation of etchant on the surface of quartz optical fiber. The aim of the work is to experimentally determine the influence of etchant droplets formed on the surface of quartz fiber in air and in the volume of the buffer layer on the characteristics of the optical fiber cladding. The main methods used were video recording of the etching process and Raman spectroscopy to determine the chemical composition of the droplets. The dynamics of droplet formation and the surface topology of the working cone of an optical fiber were studied depending on the control factors of the technological process. The main results demonstrate the complex nature of droplet formation and movement along the optical fiber during etching, taking into account the thickness of the buffer layer and the heating conditions of the system. New data have been obtained indicating a significant influence of etchant droplets on the optical fiber cladding not only in the air environment, but also in the volume of the buffer layer. A spectral analysis of the chemical composition of the etchant droplets was performed, and the final shape of the preforms was described depending on the system’s control parameters. Based on the results of the study, it is planned to obtain data on the optimal thickness of the buffer layer for obtaining a lensed optical fiber of the required shape. The practical significance is determined by the discovery of optimal conditions for chemical etching of optical fiber, the implementation of which will speed up the process and make it possible to obtain higher-quality blanks at the output.
lensed optical fiber, buffer layer, chemical etching, Raman spectroscopy, hydrofluoric acid
Acknowledgements:the work was carried out with funds from the Russian Science Foundation grant № 24-91-21001.
OCIS codes: 060.2280, 060.2290
References:1. Плеханов А.И., Шелковников В.В. Оптические волокна с концевыми фотополимерными микролинзами // Российские нанотехнологии. 2006. Т. 1. № 1–2. С. 240–244.
Plekhanov A.I., Shelkovnikov V.V. Optical fiber with end-capped photopolymer microlenses // Russian nanotechnologies. 2006. V. 1. № 1–2. P. 240–244.
2. Кучмижак А.А., Гурбатов С.О., Витрик О.Б. и др. Технология создания волоконных микроаксиконов для фокусировки лазерного излучения и генерации Бесселевых пучков // Вестник ДВО РАН. 2014. Т. 6. С. 123–131.
Kuchmizhak A.A., Gurbatov S.O., Vitrik O.B., et al. Technology for fabrication of fiber microaxicons for laser focusing and generation of Bessel beams [in Russian] // Vestnik of the Far East Branch of the Russian Academy of Sciences. 2014. V. 6. P. 123–131.
3. Grattan K.T.V., Sun T. Fiber optic sensor technology: An overview // Sens. Actuators A Phys. 2000. V. 82. № 1. P. 40–61. https://doi.org/10.1016/S0924-4247(99)00368-4
4. Udd E. Overview of fiber optic sensors / in Fiber Optic Sensors. CRC Press, 2017. 34 p.
5. Липницкая С.Н., Романов А.Е, Бугров В.Е. и др. Расчет и оптимизация оптической системы ввода излучения в одномодовое оптическое волокно // Оптический журнал. 2019. Т. 86. № 5. С. 17–22. http://doi.org/10.17586/1023-5086-2019-86-05-17-22
Lipnitskaya S.N., Romanov A.E, Bugrov V.E., et al. Calculation and optimization of an optical system for radiation coupling into a single-mode optical fiber // J. Opt. Technol. 2019. V. 86. № 5. P. 273–277. https://doi.org/10.1364/JOT.86.000273
6. Yuan Y., Wang L., Ding L., et al. Theory, experiment, and application of optical fiber etching // Appl. Opt. 2012. V. 51. № 24. P. 5845–5849. https://doi.org/10.1364/AO.51.005845
7. Mononobe S., Ohtsu M. Fabrication of a pencil-shaped fiber probe for near-field optics by selective chemical etching // J. Lightwave Technol. 1996. V. 14. № 10. P. 2231–2235. https://doi.org/10.1109/50.541212
8. Васильев М. Г., Васильев А. М., Голованов В.В. и др. Метод ступенчатого травления оптического волокна // Журнал неорганической химии. 2016. Т. 61. № 9. С. 1218–1220.
Vasilev M. G., Vasilev A. M., Golovanov V.V., et al. Optical fiber step etching method [in Russian] // Russian J. Inorganic Chem. 2016. V. 61. № 9. P. 1218–1220.
9. Eisenstein G., Vitello D. Chemically etched conical microlenses for coupling single mode lasers into single mode fibers // Appl. Opt. 1982. P. 3470–3474. https://doi.org/10.1364/AO.21.003470
10. Minh P.N., Ono T., Haga Y., et al. Bach fabrication of microlens at the end of optical fiber using self-photolithgraphy and etching techniques // Opt. Rev. 2003. V. 10. № 3. P. 150–154. https://doi.org/10.1007/s10043-003-0150-4
11. Koshelev A., Calafiore G., Piña-Hernandez C., et al. High refractive index Fresnel lens on a fiber fabricated by nanoimprint lithography for immersion applications // Opt. Lett. 2016. V. 41. № 15. P. 3423–3426. https://doi.org/10.1364/OL.41.003423
12. Asadollahbaik A., Thiele S., Weber K., et al. Highly efficient dual-fiber optical trapping with 3D printed diffractive Fresnel lenses // ACS Photonics. 2020. V. 7. № 1. P. 88–97. https://doi.org/10.1021/acsphotonics.9b01024
13. Blachowicz T., Ehrmann G., Ehrmann A. Optical elements from 3D printed polymers // e-Polymers. 2021. V. 21. № 1. P. 549–565. https://doi.org/10.1515/epoly-2021-0061
14. Presby H.M., Edwards C.A. Near 100% efficient fiber microlenses // Electron. Lett. 1992. V. 28. № 6. P. 582–584. https://doi.org/10.1049/el:19920367
15. Корнилин Д.А., Пономарев Р.С., Демин В.А. Экспериментальное исследование влияния толщины буферного слоя на форму заготовок для линзованных оптических волокон // Фундаментальные проблемы современного материаловедения. 2024. Т. 21. № 3. С. 396–403.
Kornilin D.A., Ponomarev R.S, Demin V.A. Experimental investigation of the effect of buffer layer thickness on the shape of lensed optical fibers [in Russian] // Basic Problems of Material Science (BPMS). 2024. V. 21. № 3. P. 396–403.
16. Корнилин Д.А., Пономарев Р.С., Демин В.А. Физико-химические особенности процесса травления оптического волокна с буферным слоем ксилола // Вестник Пермского университета. Физика. 2025. № 1. С. 5–10.
Kornilin D.A., Ponomarev R.S., Demin V.A. Physical and chemical characteristics of the etching of optical fiber with a xylene buffer layer [in Russian] // Bulletin of Perm University. Physics. 2025. № 1. P. 5–10.
ru