ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 004.932

A method of segmenting leukocytes on images of blood smears

For Russian citation (Opticheskii Zhurnal):

Дырнаев А.В. Метод сегментации лейкоцитов на изображениях мазков крови // Оптический журнал. 2012. Т. 79. № 11. С. 41–46.

Dyrnaev A.V. A method of segmenting leukocytes on images of blood smears  [in English] // Opticheskii Zhurnal. 2012. V. 79. № 11. P. 41–46.

For citation (Journal of Optical Technology):

A. V. Dyrnaev, "A method of segmenting leukocytes on images of blood smears," Journal of Optical Technology. 79(11), 708-711 (2012). https://doi.org/10.1364/JOT.79.000708

Abstract:

This article explains the features of a method for segmenting microscopic images of blood specimens, in which the main types of leukocytes are discriminated and counted. The segmentation is based on threshold classification of the image of a blood smear according to brightness, hue, and saturation, using morphological processing of binary masks, calculation of the objects’ parameters such as fill factor, eccentricity, and equivalent diameter, and calculation of the objects’ texture characteristics. The method is stable against the presence of noise on the image, as well as against small changes of the color characteristics of the cells.

Keywords:

cell count, digital microscopy, image segmentation

OCIS codes: 150.1135

References:
1. Yu. I. Afanas’ev, N. A. Yurina, and E. F. Kotovski˘ı, Histology, Cytology, and Embryology (Meditsina, Moscow, 2002).
2. A. V. Dyrnaev and A. S. Potapov, “Combined method of counting erythrocytes on the images of blood smears,” Nauch. Tekhnich. Vest. SPbGU ITMO No. 01(77), 19 (2012).
3. M. N. Miller, “Leukocyte classification by morphological criteria,” in Engineering Foundation Conference on Automatic Cytology, Saxtons River, VT, 1972, pp. 14–18.
4. P. Van Osta, J. M. Geusebroek, K. Ver Donck, L. Bols, J. Geysen, and B. M. ter Haar Romeny, “The principles of scale space applied to structure and colour in light microscopy,” Proc. Royal Microsc. Soc. 37, 161 (2002).
5. Cheng Ke, “White blood cell detection using a novel fuzzy morphological shared-weight neural network,” in International Symposium on Computer Science and Computational Technology, Vol. 2, 2008, pp. 532–535.
6. X. B. Song, Y. S. Abu-Mostafa, J. Sill, and H. Kasdan, “Incorporating contextual information in white blood cell identification,” in Proceedings of the 1997 Conference on Advances in Neural Information-Processing Systems 10, MIT Press Cambridge, MA, USA, 1998, pp. 950–956.
7. S. K. Bandyopadhyay and S. Roy, “Detection of sharp contour of the element of the WBC and segmentation of two leading elements like nucleus and cytoplasm,” Int. J. Eng. Res. Appl. 2, No. 1, 545 (2012).
8. D. D. Nawgaje, “Implementation of fuzzy inference system for white blood cell cancer detection using DSP TMS320C6711,” Int. J. Eng. Sci. Technol. Spec. Issue 123 (2011).
9. G. Giemsa, “Eine Vereinfachung und Vervollkommnung meiner Methylenazur-Methylenblau-Eosin-F¨arbemethode zur Erzielung der Romanowsky-Nochtschen Chromatinf¨arbung,” Centralbl. f¨ur Bakt. 37, 308 (1904).
10. N. Otsu, “A threshold selection method from gray-level histograms,” IEEE Trans. Syst. Man Cybern. 9, 62 (1979).
11. H. Samet and M. Tamminen, “Efficient component labeling of images of arbitrary dimension represented by linear bintrees,” IEEE Trans. Pattern Anal. Mach. Intell. 10, 579 (1988).
12. H. Steinhaus, “Sur la division des corps mat´eriels en parties,” Bull. Acad. Pol. Sci. C1, 801 (1956).
13. S. Lloyd, “Least square quantization in PCMs,” in Bell Telephone Laboratories Paper (1957), pp. 129–137.