ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 519.245 535.34 535.36

Modelling the propagation of radiation in inhomogeneous media using computations on graphical processors

For Russian citation (Opticheskii Zhurnal):

Кривцун А.М., Сетейкин А.Ю. Моделирование распространения излучения в неоднородных средах с использованием вычислений на графических процессорах // Оптический журнал. 2012. Т. 79. № 9. С. 8–13.
     
Krivtsun A. M., Seteĭkin A. Yu. Modelling the propagation of radiation in inhomogeneous media using computations on graphical processors [in English] // Opticheskii Zhurnal. 2012. V. 79. № 9. P. 8–13.

 

For citation (Journal of Optical Technology):
A. M. Krivtsun and A. Yu. Seteĭkin, "Modelling the propagation of radiation in inhomogeneous media using computations on graphical processors," Journal of Optical Technology. 79(9), 534-537 (2012).  https://doi.org/10.1364/JOT.79.000534
Abstract:

This paper discusses a number of questions that arise when the propagation of optical radiation in biological tissues is calculated. Results of the modelling are obtained for media with various sets of optical parameters, including a six-layer model of human skin. An approach is presented for increasing the computational efficiency of the method that is used.

Keywords:

Monte Carlo method, voxel, anisotropy, scattering, statistical weight

OCIS codes: 260.0260, 170.3660

References:

1. A. Ishimaru, Wave Propagation and Scattering in Random Media: Multiple Scattering, Turbulence, Rough Surfaces, and Remote Sensing (Academic Press, New York, 1978).
2. A. H. Hielscher, R. E. Alcouffe, and R. L. Barbour, “Comparison of finite-difference transport and diffusion calculations for photon migration in homogeneous and heterogeneous tissues,” Phys. Med. Biol. 43, 1285 (1998).
3. A. J. Welch and M. J. C. van Gemert, Optical-Thermal Response of Laser-Irradiated Tissue (Plenum Pub. Corp., New York, 1995).
4. A. J. Page, S. Coyle, T. M. Keane, T. J. Naughton, C. Markham, and T. Ward, “Distributed Monte Carlo simulation of light transportation in tissue,” in Proceedings of the Twentieth IEEE International Parallel & Distributed Processing Symposium, 2006.
5. L. F. Romero, O. Trelles, and M. A. Trelles, “Real-time simulation for laser-tissue interaction model,” in Parallel Computing: Current & Future Issues of High-End Computing, in Proceedings of the International Conference ParCo–2005, NIC Series, No. 33, 2005, pp. 415–422.
6. L. H. Wang and S. L. Jacques, “MCML–Monte Carlo modeling of photon transport in multi-layered tissues,” Comput. Methods Programs Biomed. 47, 131 (1995).
7. D. Boas, J. Culver, J. Stott, and A. Dunn, “Three-dimensional Monte Carlo code for photon migration through complex heterogeneous media including the adult human head,” Opt. Express 10, 159 (2002).
8. S. L. Jacques and L.-H. Wang, “Monte Carlo modeling of light transport in tissues,” in Optical-Thermal Response of Laser-Irradiated Tissue (Plenum Pub. Corp., New York, 1995), pp. 73–100.
9. W. C. Y. Lo, T. D. Han, J. Rose, and L. Lilge, “GPU-accelerated Monte Carlo simulation for photodynamic therapy treatment planning,” Proc. SPIE 7373, 737313 (2009).
10. I. V. Meglinski˘ı, “Monte Carlo simulation of reflection spectra of random multilayer media strongly scattering and absorbing light,” Kvant. Elektron. (Moscow) 31, 1101 (2001). [Quantum Electron. 31, 1101 (2001)].
11. V. V. Tuchin, Lasers and Fiber Optics in Biomedical Research (Izd. Sarat. Univ, Saratov, 1998).
12. A. Yu. Sete˘ıkin, I. V. Krasnikov, and N. I. Fogel’, “Modelling temperature fields taking into account the propagation of light in biological tissue,” Izv. Vyssh. Uchebn. Zaved. Prib. 50, No. 9, 24 (2007).