ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 681.785.5

Acousto-optic video spectrometer module for medical endoscopic studies

For Russian citation (Opticheskii Zhurnal):

Мачихин А.С., Пожар В.Э., Батшев В.И. Акустооптический видеоспектрометрический модуль для медицинских эндоскопических исследований // Оптический журнал. 2013. Т. 80. № 7. С. 44–49.

 

Machikhin A.S., Pozhar V.E., Batshev V.I. Acousto-optic video spectrometer module for medical endoscopic studies [in Russian] // Opticheskii Zhurnal. 2013. V. 80. № 7. P. 44–49.

For citation (Journal of Optical Technology):

A. Machikhin, V. Pozhar, and V. Batshev, "Acousto-optic video spectrometer module for medical endoscopic studies," Journal of Optical Technology. 80(7), 439-443 (2013). https://doi.org/10.1364/JOT.80.000439

Abstract:

This paper describes a prototype of an acousto-optic video spectrometer module that can be linked with rigid lens-type and flexible optical-fiber medical endoscopes. Examples are given of the resulting spectral images, demonstrating the main quality of the developed layout—minimization of spatiospectral distortions. This allows the device to be used in problems of photoluminescence diagnosis in medical applications to rapidly obtain both spectral images and undistorted complete spectra of any point of an image of an internal organ. The possibilities and prospects of this approach are analyzed.

Keywords:

acousto-optic filtering, endoscopy, photoluminescent diagnostics

Acknowledgements:

This work was carried out as part of Federal Special Program “Staffs” (State Contract 16.740.11.0723 from 6/8/2011).

OCIS codes: 230.1040, 110.4234, 110.2350

References:

1. V. V. Tuchin, Optical Biomedical Diagnostics (Fizmatlit, Moscow, 2007).
2. K. Mudry, R. Plonsey, and J. Bronzino, Biomedical Imaging (CRC Press, New York, 2003).
3. A. Goutzulis and D. Rape, Design and Fabrication of Acousto-optic Devices (Dekker, New York, 1994).
4. V. Pustovoit and V. Pozhar, “Collinear diffraction of light by sound waves in crystals: devices, applications, new ideas,” Photonics Optoelectron. 2, No. 2, 53 (1994).
5. V. É. Pozhar, S. V. Boritko, I. B. Kutuza, A. V. Perchik, and V. N. Shorin, “Stand for developing methods and facilities of fluorescence diagnosis of cancer,” Al’manakh Klinich. Med. 17, 123 (2008).
6. N. Gupta and J. Ramella-Roman, “Detection of blood oxygen level by noninvasive passive spectral imaging of skin,” Proc. SPIE 6842, 68420C (2008).
7. I. Kutuza, V. Pozhar, and V. Pustovoit, “AOTF-based imaging spectrometers for research of small-size biological objects,” Proc. SPIE 5143, 165 (2003).
8. M. Bouhifd, M. Whelan, and M. Aprahamian, “Fluorescence imaging spectroscopy utilising acousto-optic tuneable filters,” Proc. SPIE 5826, 185 (2005).
9. M. Bouhifd, M. Whelan, and M. Aprahamian, “Use of acousto-optic tunable filter in fluorescence imaging endoscopy,” Proc. SPIE 5143, 305 (2003).
10. M. Martin, M. Wabuyele, M. Panjehpour, M. Phan, B. Overholt, R. DeNovo, T. Moyers, S. Gon Song, and T. Vo-Dohn, “Dual modality fluorescence and reflectance hyperspectral imaging: principle and applications,” Proc. SPIE 5692, 133 (2005).
11. M. M. Mazur, V. É. Pozhar, V. I. Pustovoı˘t, and V. N. Shorin, “Double acousto-optical monochromators,” Usp. Sovrem. Radioélek. No. 10, 19 (2006).
12. A. S. Machikhin and V. É. Pozhar, “Image distortions accompanying transmission through double acousto-optic monochromators,” Élektromag. Volny Élek. Sistemy 14, No. 11, 63 (2009).
13. A. S. Machikhin, V. I. Batshev, and A. V. Perchik, “Calculating optical systems for matching tunable acousto-optic filters and eyepieces of observational devices,” in Collection of the Papers of the Ninth International Conference on Applied Optics, St. Petersburg, 2012, vol. 1, pp. 132–135.
14. V. Pozhar and A. Machihin, “Image aberrations caused by light diffraction via ultrasonic waves in uniaxial crystals.,” Appl. Opt. 51, 4513 (2012).
15. V. Voloshinov, K. Yushkov, and B. Linde, “Improvement in performance of a TeO2 acousto-optic imaging spectrometer,” J. Opt. A 9, 341 (2007).