ITMO
ru/ ru

ISSN: 1023-5086

ru/

ISSN: 1023-5086

Scientific and technical

Opticheskii Zhurnal

A full-text English translation of the journal is published by Optica Publishing Group under the title “Journal of Optical Technology”

Article submission Подать статью
Больше информации Back

УДК: 535.21, 539.1.043, 538.935

The effect of an ultrashort laser pulse on metals: Two-temperature relaxation, foaming of the melt, and freezing of the disintegrating nanofoam

For Russian citation (Opticheskii Zhurnal):

Иногамов Н.А., Жаховский В.В., Петров Ю.В., Хохлов В.А., Ашитков С.И., Мигдал К.П., Ильницкий Д.К., Эмиров Ю.Н., Комаров П.С., Агранат М.Б., Анисимов С.И., Фортов В.Е. Действие ультракороткого лазерного импульса на металлы: двухтемпературная релаксация, вспенивание расплава и замораживание разрешающейся нанопены // Оптический журнал. 2014. Т. 81. № 5. С. 5–26.

 

Inogamov N.A., Zhakhovskiy V.V., Petrov Yu.V., Khokhlov V.A., Ashitkov S.I., Migdal K.P., Ilnitskiy D.K., Emirov Yu.N., Komarov P.S., Agranat M.B., Anisimov S.I., Fortov V.E. The effect of an ultrashort laser pulse on metals: Two-temperature relaxation, foaming of the melt, and freezing of the disintegrating nanofoam [in Russian] // Opticheskii Zhurnal. 2014. V. 81. № 5. P. 5–26.

For citation (Journal of Optical Technology):

N. A. Inogamov, Yu. V. Petrov, V. A. Khokhlov, S. I. Anisimov, V. V. Zhakhovskiĭ, S. I. Ashitkov, P. S. Komarov, M. B. Agranat, V. E. Fortov, K. P. Migdal, D. K. Il’nitskiĭ, and Yu. N. Émirov, "The effect of an ultrashort laser pulse on metals: Two-temperature relaxation, foaming of the melt, and freezing of the disintegrating nanofoam," Journal of Optical Technology. 81(5), 233-249 (2014). https://doi.org/10.1364/JOT.81.000233

Abstract:

Ultrashort heating of substances converts them into the two-temperature (2T) state with hot electrons. The thickness of the heated layer rapidly increases into the depth of the metal in this state (by comparison with the thickness of the skin layer), and the pressure in the heated layer rises sharply because of the high rate of heating (inertial confinement). A technique has been developed for taking into account 2T, thermomechanical, and multidimensional (target-structuring) phenomena. It is based on quantum-mechanical computations by means of the density functional, the solution of kinetic equations, and 2T hydrodynamic and molecular-dynamic calculations. The mechanism for forming superelastic shock waves and for constructing complex surface structures has been studied. The corresponding results have great significance for developing promising nanometallurgical technologies associated with laser pinning, for increasing corrosion resistance, and for altering optical surface characteristics.

Keywords:

ultrashort laser pulse, two-temperature state, laser ablation, transport coefficients

Acknowledgements:

This work was supported by a grant of the Russian Foundation for Basic Research (13-02-01078) and Rosatom State Corp. (GK N.4x.44.90.13.1111).

OCIS codes: 320.2250, 320.5390, 321.7130, 140.3330, 140.6810, 160.3900

References:

1. S. I. Anisimov, B. L. Kapeliovich, and T. L. Perel’man, “Electron emission from the surface of metals under the action of ultrashort laser pulses,” Zh. Eksp. Teor. Fiz. 66, 776 (1974) [Sov. Phys. JETP 39, 375 (1974)].
2. V. P. Veı˘ko, M. N. Libenson, G. G. Chervyakov, and E. B. Yakovlev, The Interaction of Laser Radiation with Matter (Fizmatlit, Moscow, 2008).
3. N. Inogamov, Y. Petrov, V. Zhakhovsky, V. Khokhlov, B. Demaske, S. Ashitkov, K. Khishchenko, K. Migdal, M. Agranat, S. Anisimov, V. Fortov, and I. Oleynik, “Two-temperature thermodynamic and kinetic properties of transition metals irradiated by femtosecond lasers,” AIP Conf. Proc. 1464, 593 (2012).
4. S. I. Anisimov, V. V. Zhakhovskiı˘, N. A. Inogamov, K. Nishihara, Yu. V. Petrov, and V. A. Khokhlov, “Ablated matter expansion and crater formation under the action of ultrashort laser pulse,” Zh. Eksp. Teor. Fiz. 130, 212 (2006) [JETP 103, 183 (2006)].
5. N. A. Inogamov and Yu. V. Petrov, “Thermal conductivity of metals with hot electrons,” Zh. Eksp. Teor. Fiz. 137, 505 (2010) [JETP 110, 446 (2010)].
6. Yu. V. Petrov, N. A. Inogamov, and K. P. Migdal, “Thermal conductivity and the electron–ion heat transfer coefficient in condensed media with a strongly excited electron subsystem,” Pis’ma Zh. Eksp. Teor. Fiz. 97, 24 (2013) [JETP Lett. 97, 20 (2013)].
7. Yu. V. Petrov and N. A. Inogamov, “Elimination of the Mott interband s-d enhancement of the electrical resistance of nickel and platinum owing to the excitation of electrons by femtosecond laser pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 98, 316 (2013) [JETP Lett. 98, 278 (2013)].
8. Y. V. Petrov, “Energy exchange between the lattice and electrons in a metal under femtosecond laser irradiation,” Laser Part. Beams 23, 283 (2005).
9. N. Inogamov, S. Anisimov, V. Zhakhovsky, A. Faenov, Y. Petrov, V. Khokhlov, V. Fortov, M. Agranat, S. Ashitkov, P. Komarov, I. Skobelev, Y. Kato, T. Pikuz, V. Shepelev, Y. Fukuda, M. Tanaka, M. Kishimoto, M. Ishino, M. Nishikino, M. Kando, T. Kawachi, M. Nagasono, H. Ohashi, M. Yabashi, K. Tono, Y. Senda, T. Togashi, and T. Ishikawa, “Ablation by short optical and x-ray laser pulses,” Proc. SPIE 7996, 79960T (2011).
10. N. Inogamov, A. Faenov, V. Zhakhovsky, T. Pikuz, I. Skobelev, Y. Petrov, V. Khokhlov, V. Shepelev, S. Anisimov, V. Fortov, Y. Fukuda, M. Kando, T. Kawachi, M. Nagasono, H. Ohashi, V. Yabashi, K. Tono, Y. Senda, T. Togashi, and T. Ishikawa, “Two-temperature warm dense matter produced by ultrashort extreme vacuum ultraviolet-free electron laser (EUV-FEL) pulse,” Contrib. Plasma Phys. 51, 419 (2011).
11. Z. Lin, L. V. Zhigilei, and V. Celli, “Electron–phonon coupling and electron heat capacity of metals under conditions of strong electron–phonon non-equilibrium,” Phys. Rev. B 77, 075133 (2008).
12. B. Rethfeld, A. Kaiser, M. Vicanek, and G. Simon, “Ultrafast dynamics of nonequilibrium electrons in metals under femtosecond laser irradiation,” Phys. Rev. B 65, 214303 (2002).
13. S. Amoruso, R. Bruzzese, X. Wang, and P. Atanasov, “Femtosecond laser ablation of nickel in vacuum,” J. Phys. D 40, 331 (2007).
14. A. Kanavin, I. Smetanin, V. Isakov, Y. Afanasiev, B. Chichkov, B. Wellegehausen, S. Nolte, C. Momma, and A. Tunnermann, “Heat transport in metals irradiated by ultrashort laser pulses,” Phys. Rev. B 57, 14698 (1998).
15. P. Loboda, N. Smirnov, A. Shadrin, and N. Karlykhanov, “Simulation of absorption of femtosecond laser pulses in solid-density copper,” High Energy Density Phys. 7, 361 (2011).
16. M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, Y. V. Petrov, V. E. Fortov, and V. A. Khokhlov, “Dynamics of plume and crater formation after action of femtosecond laser pulse,” Appl. Surf. Sci. 253, 6276 (2007).
17. M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, V. V. Zhakhovskii, N. A. Inogamov, K. Nishihara, and Y. V. Petrov, “Nanospallation induced by a femtosecond laser pulse,” Proc. SPIE 6720, 672002 (2007).
18. N. A. Inogamov, V. V. Zhakhovskiı˘, S. I. Ashitkov, Yu. V. Petrov, M. B. Agranat, S. I. Anisimov, K. Nishihara, and V. E. Fortov, “Nanospallation induced by an ultrashort laser pulse,” Zh. Eksp. Teor. Fiz. 134, 5 (2008) [JETP 107, 1 (2008)].
19. N. A. Inogamov, S. I. Anisimov, Y. V. Petrov, V. A. Khokhlov, V. V. Zhakhovskii, K. Nishihara, M. B. Agranat, S. I. Ashitkov, and P. S. Komarov, “Theoretical and experimental study of hydrodynamics of metal target irradiated by ultrashort laser pulse,” Proc. SPIE 7005, 70052 (2008).
20. Y. V. Petrov, V. V. Zhakhovskii, N. A. Inogamov, S. I. Ashitkov, V. A. Khokhlov, A. K. Upadhyay, M. B. Agranat, S. I. Anisimov, K. Nishihara, B. Rethfeld, and H. M. Urbassek, “Equation of state of matter irradiated by short laser pulse and geometry of spalled cupola,” Proc. SPIE 7005, 70051 (2008).
21. S. Anisimov, N. Inogamov, Y. Petrov, V. Khokhlov, V. Zhakhovskii, K. Nishihara, M. Agranat, S. Ashitkov, and P. Komarov, “Thresholds for frontal ablation and backside spallation of thin foil irradiated by femtosecond laser pulse,” Appl. Phys. A 92, 797 (2008).
22. L. V. Zhigilei, Z. Lin, and D. S. Ivanov, “Atomistic modeling of short-pulse laser ablation of metals: Connections between melting, spallation, and phase explosion,” J. Phys. Chem. C 113, 11892 (2009).
23. V. Zhakhovskii, N. Inogamov, Y. Petrov, S. Ashitkov, and K. Nishihara, “Molecular dynamics simulation of femtosecond ablation and spallation with different interatomic potentials,” Appl. Surf. Sci. 255, 9592 (2009).
24. E. T. Karim, Z. Lin, and L. V. Zhigile, “Molecular dynamics study of femtosecond laser interactions with Cr targets,” AIP Conf. Proc. 1464, 280 (2012).
25. M. B. Agranat, S. I. Anisimov, S. I. Ashitkov, V. V. Zhakhovskiı˘, N. A. Inogamov, P. S. Komarov, A. V. Ovchinnikov, V. E. Fortov, V. A. Khokhlov, and V. V. Shepelev, “Strength properties of an aluminum melt at extremely high tension rates under the action of femtosecond laser pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 91, 517 (2010) [JETP Lett. 91, 471 (2010)].

26. S. I. Ashitkov, M. B. Agranat, G. I. Kanel’, P. S. Komarov, and V. E. Fortov, “Behavior of aluminum near an ultimate theoretical strength in experiments with femtosecond laser pulses,” Pis’ma Zh. Eksp. Teor. Fiz. 92, 516 (2010) [JETP Lett. 92, 516 (2010)].
27. S. Ashitkov, N. Inogamov, P. Komarov, V. Zhakhovsky, I. Oleynik, M. Agranat, G. Kanel, and V. Fortov, “Strength of metals in liquid and solid states at extremely high tension produced by femtosecond laser heating,” AIP Conf. Proc. 1464, 120 (2012).
28. N. Inogamov, A. Faenov, V. Khokhlov, V. Zhakhovskii, Y. Petrov, I. Skobelev, K. Nishihara, Y. Kato, M. Tanaka, T. Pikuz, M. Kishimoto, M. Ishino, M. Nishikino, Y. Fukuda, S. Bulanov, T. Kawachi, S. Anisimov, and V. Fortov, “Spallative ablation of metals and dielectrics,” Contrib. Plasma Phys. 49, 455 (2009).
29. B. Demaske, V. Zhakhovsky, N. Inogamov, and I. Oleynik, “Ablation and spallation of gold films irradiated by ultrashort laser pulses,” Phys. Rev. B 82, 064113 (2010).
30. V. Zhakhovsky, B. Demaske, N. Inogamov, V. Khokhlov, S. Ashitkov, M. Agranat, and I. Oleynik, “Super-elastic response of metals to laser-induced shock waves,” AIP Conf. Proc. 1464, 102 (2012).
31. B. Demaske, V. Zhakhovsky, N. Inogamov, and I. Oleynik, “Molecular dynamics simulations of femtosecond laser ablation and spallation of gold,” AIP Conf. Proc. 1278, 121 (2010).
32. B. Demaske, V. Zhakhovsky, N. Inogamov, C. White, and I. Oleynik, “MD simulations of laser-induced ultrashort shock waves in nickel,” AIP Conf. Proc. 1426, 1163 (2012).
33. B. J. Demaske, V. V. Zhakhovsky, N. A. Inogamov, and I. I. Oleynik, “Ultrashort shock waves in nickel induced by femtosecond laser pulses,” Phys. Rev. B 87, 054109 (2013).
34. A. V. Bushman, G. I. Kanel’, A. L. Ni, and V. E. Fortov, Intense Dynamic Loading of Condensed Matter (Taylor & Francis, 1993).
35. G. I. Kanel, S. V. Razorenov, and V. E. Fortov, Shock-Wave Phenomena and the Properties of Condensed Matter (Springer, 2004).
36. T. Antoun, L. Seaman, D. R. Curran, G. I. Kanel, S. V. Razorenov, and A. V. Utkin, Spall Fracture (Shock Wave and High Pressure Phenomena) (Springer, 2003).
37. G. I. Kanel’, V. E. Fortov, and S. V. Razorenov, “Shock waves in condensed-state physics,” Usp. Fiz. Nauk 177, 809 (2007) [Phys.–Usp. 50, 771 (2007)].
38. O. V. Misochko, “Nonclassical states of lattice excitations: squeezed and entangled phonons,” Usp. Fiz. Nauk 183, 917 (2013) [Phys.–Usp. 56, 868 (2013)].
39. E. S. Zijlstra, A. Kalitsov, T. Zier, and M. E. Garcia, “Squeezed thermal phonons precurse nonthermal melting of silicon as a function of fluence,” Phys. Rev. X 3, 011005 (2013).
40. E. G. Gamaly and A. V. Rode, “Ultrafast electronic relaxation in super-heated bismuth,” New J. Phys. 15, 013035 (2013).
41. S. Khakshouri, D. Alfe, and D. M. Duffy, “Development of an electron-temperature-dependent interatomic potential for molecular dynamics simulation of tungsten under electronic excitation,” Phys. Rev. B 78, 224304 (2008).
42. G. V. Sin’ko, N. A. Smirnov, A. A. Ovechkin, P. R. Levashov, and K. V. Khishchenko, “Thermodynamic functions of the heated electron subsystem in the field of cold nuclei,” High Energy Density Phys. 9, 309 (2013).
43. G. Kresse and J. Furthmuller, “Efficiency of ab initio total energy calculations for metals and semiconductors using a plane-wave basis set,” Comput. Mater. Sci. 6, 15 (1996).
44. G. Norman, I. Saitov, V. Stegailov, and P. Zhilyaev, “Atomistic modeling and simulation of warm dense matter. Conductivity and reflectivity,” Contrib. Plasma Phys. 53, 300 (2013).
45. D. V. Knyazev and P. R. Levashov, “Ab initio calculation of transport and optical properties of aluminum: Influence of simulation parameters,” Comput. Mater. Sci. 79, 817 (2013).
46. R. Evans, A. D. Badger, F. Fallies, M. Mahdieh, T. A. Hall, P. Audebert, J.-P. Geindre, J.-C. Gauthier, A. Mysyrowicz, G. Grillon, and A. Antonetti, “Time- and space-resolved optical probing of femtosecond-laser-driven shock waves in aluminum,” Phys. Rev. Lett. 77, 3359 (1996).
47. K. T. Gahagan, D. S. Moore, D. J. Funk, R. L. Rabie, S. J. Buelow, and J. W. Nicholson, “Measurement of shock wave rise times in metal thin films,” Phys. Rev. Lett. 85, 3205 (2000).
48. D. J. Funk, D. S. Moore, K. T. Gahagan, S. J. Buelow, J. H. Reho, G. L. Fisher, and R. L. Rabie, “Ultrafast measurement of the optical properties of aluminum during shock-wave breakout,” Phys. Rev. B 64, 115114 (2001).
49. S. Ashitkov, P. Komarov, M. Agranat, G. Kanel, and V. Fortov, “Measurements of a strength of metals in a picosecond time range,” Bull. Am. Phys. Soc. 58, No. 7, 187 (2013).
50. V. H. Whitley, S. D. McGrane, D. E. Eakins, C. A. Bolme, D. S. Moore, and J. F. Bingert, “The elastic-plastic response of Al films to ultrafast laser-generated shocks,” J. Appl. Phys. 109, 013505 (2011).
51. J. C. Crowhurst, M. R. Armstrong, K. B. Knight, J. M. Zaug, and E. M. Behymer, “Invariance of the dissipative action at ultrahigh strain rates above the strong shock threshold,” Phys. Rev. Lett. 107, 144302 (2011).
52. V. V. Zhakhovskiı˘ and N. A. Inogamov, “Elastic–plastic phenomena in ultrashort shock waves,” Pis’ma Zh. Eksp. Teor. Fiz. 92, 574 (2010) [JETP 92, 521 (2010)].
53. V. V. Zhakhovsky, M. M. Budzevich, N. A. Inogamov, I. I. Oleynik, and C. T. White, “Two-zone elastic-plastic single shock waves in solids,” Phys. Rev. Lett. 107, 135502 (2011).
54. N. A. Inogamov, V. V. Zhakhovskiı˘, V. A. Khokhlov, and V. V. Shepelev, “Superelasticity and the propagation of shock waves in crystals,” Pis’ma Zh. Eksp. Teor. Fiz. 93, 245 (2011) [JETP Lett. 93, 226 (2011)].
55. L. Huang, Y. Yang, Y. Wang, Z. Zheng, and W. Su, “Measurement of transit time for femtosecond-laser-driven shock wave through aluminium films by ultrafast microscopy,” J. Phys. D 42, 045502 (2009).
56. B. Demaske, V. Zhakhovsky, N. Inogamov, C. White, and I. Oleynik, “Split and two-zone elastic–plastic shock waves in nickel: a molecular dynamics study,” Bull. Am. Phys. Soc. 58, No. 7, 151 (2013).
57. N. Inogamov, S. Ashitkov, V. Zhakhovsky, V. Shepelev, V. Khokhlov, P. Komarov, M. Agranat, S. Anisimov, and V. Fortov, “Acoustic probing of two-temperature relaxation initiated by action of ultrashort laser pulse,” Appl. Phys. A 101, 1 (2010).
58. N. Inogamov, V. Zhakhovsky, S. Ashitkov, V. Khokhlov, V. Shepelev, P. Komarov, A. Ovchinnikov, D. Sitnikov, Y. Petrov, M. Agranat, S. Anisimov, and V. Fortov, “Laser acoustic probing of two-temperature zone created by femtosecond pulse,” Contrib. Plasma Phys. 51, 367 (2011).
59. S. I. Ashitkov, N. A. Inogamov, V. V. Zhakhovskiı˘, Yu. N. Émirov, M. B. Agranat, I. I. Oleı˘nik, S. I. Anisimov, and V. E. Fortov, “Formation of nanocavities in the surface layer of an aluminum target irradiated by a femtosecond laser pulse,” Pis’ma Zh. Eksp. Teor. Fiz. 95, 192 (2012) [JETP Lett. 95, 176 (2012)].
60. V. V. Zhakhovskii, N. A. Inogamov, and K. Nishihara, “Laser ablation and spallation of crystalline aluminum simulated by molecular dynamics,” J. Phys.: Conf. Ser. 112, 042080 (2008).
61. V. V. Zhakhovskiı˘, N. A. Inogamov, and K. Nishihara, “New mechanism of the formation of the nanorelief on a surface irradiated by a femtosecond laser pulse,” Pis’ma Zh. Eksp. Teor. Fiz. 87, 491 (2008) [JETP Lett. 87, 423 (2008)].
62. V. Zhakhovskii, K. Nishihara, Y. Fukuda, and S. Shimojo, “A new dynamical domain decomposition method for parallel molecular dynamics simulation on grid,” arXiv:DC/0405086v1 (24 May 2004).
63. A. Kuznetsov, J. Koch, and B. Chichkov, “Nanostructuring of thin gold films by femtosecond lasers,” Appl. Phys. A 94, 221 (2009).
64. D. Ivanov, A. Kuznetsov, V. Lipp, B. Rethfeld, B. Chichkov, M. Garcia, and W. Schulz, “Short laser pulse nanostructuring of metals: direct comparison of molecular dynamics modeling and experiment,” Appl. Phys. A 111, 675687 (2013).
65. Y. Nakata, K. Tsuchida, N. Miyanaga, and T. Okada, “Nano-sized and periodic structures generated by interfering femtosecond laser,” J. Laser Micro/Nanoeng. 3, No. 2, 63 (2008).