УДК: 616-002.153
Use of fluorescence spectroscopy for diagnosis of hypoxia and inflammatory processes in tissue
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Петрицкая Е.Н., Куликов Д.А., Рогаткин Д.А., Гусева И.А., Куликова П.А. Использование флуоресцентной спектроскопии для диагностики гипоксии и воспалительных процессов в тканях // Оптический журнал. 2015. Т. 82. № 12. С. 41–46.
Petritskaya E.N., Kulikov D.A., Rogatkin D.A., Guseva I.A., Kulikova P.A. Use of fluorescence spectroscopy for diagnosis of hypoxia and inflammatory processes in tissue [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 12. P. 41–46.
E. N. Petritskaya, D. A. Kulikov, D. A. Rogatkin, I. A. Guseva, and P. A. Kulikova, "Use of fluorescence spectroscopy for diagnosis of hypoxia and inflammatory processes in tissue," Journal of Optical Technology. 82(12), 810-814 (2015). https://doi.org/10.1364/JOT.82.000810
In vivo laser-induced fluorescence spectroscopy (LIFS) is primarily used in oncology for the diagnosis of malignant tumors. This paper provides background for and describes experiments modeling nonmalignant local hypoxia and inflammation. LIFS techniques were used to assess the dynamics of induced fluorescence from endogenous porphyrins in the first case and the Photosens exogenous photosensitizer in the second case. In both cases, the fluorescence intensity was observed to be higher in the pathological area than in an intact area. This provides a strong impetus for taking a second look at the use of LIFS in oncology and also provides the foundation for a promising in vivo diagnosis method for ischemic hypoxia and inflammatory processes in areas other than oncology.
laser, fluorescence, spectroscopy, biological tissue, occlusion, ischemia, hypoxia, inflammation
OCIS codes: 170.6280, 170.2655, 170.6510
References:1. D. Rogatkin, V. Shumskiy, S. Tereshenko, and P. Polyakov, “Laser-based non-invasive spectrophotometry—an overview of possible medical application,” Photon. Lasers Med. 2(3), 225–240 (2013).
2. S. Udenfriend, Fluorescence Assay in Biology and Medicine (Academic, New York, 1962).
3. M.-A. Mycek and B. W. Pogue, Handbook of Biomedical Fluorescence (Marcel Dekker, New York, 2003).
4. H. Tappeiner and A. Jesionek, “Therapeutische Versuche mit fluoreszierenden Stoffen,” Muench. Med. Wochenschr. 50, 2041–2051 (1903).
5. A. Policard, “Étude sur les aspects offerts par des tumeurs expérimentales examinees a la lumière de Wood,” C. R. Soc. Biol. 91, 1423–1424 (1924).
6. M. W. Berns and A. G. Wile, “Hematoporphyrin phototherapy of cancer,” Radiother. Oncol. J. Eur. Soc. Ther. Radiol. Oncol. 7(3), 233–240 (1986).
7. D. M. Harris and J. Werkhaven, “Endogenous porphyrin fluorescence in tumors,” Lasers Surg. Med. 7(4), 467–472 (1987).
8. D. A. Rogatkin, O. A. Bychenkov, and L. G. Lapaeva, “The accuracy, reliability and interpretation of the results of in vivo laser fluorescence diagnosis in the spectral range of the fluorescence of endogenous porphyrins,” J. Opt. Technol. 76(11), 708–713 (2009) [Opt. Zh. 76(11), 46–53 (2009)].
9. M. M. H. El-Sharabasy, A. M. El-Wassel, M. M. Hafez, and S. A. Salim, “Porphyrin metabolism in some malignant diseases,” Br. J. Cancer 65, 409–412 (1992).
10. K. S. Litvinova, D. A. Rogatkin, O. A. Bychenkov, and V. I. Shumskiy, “Chronic hypoxia as a factor of enhanced autofluorescence of endogenous porphyrins in soft biological tissues,” Proc. SPIE 7547, 75470D (2010).
11. N. N. Zaĭko and Yu. V. Byts, Pathological Physiology. A Textbook (Medpress-Inform, Moscow, 2008).
12. V. V. Serov and V. S. Paukov, Inflammation: A Handbook for Doctors (Meditsina, Moscow, 1995).
13. D. A. Rogatkin, L. G. Lapaeva, E. N. Petritskaya, V. V. Sidorov, and V. I. Shumskiy, “Multifunctional laser noninvasive spectroscopic system for medical diagnostics and metrological provisions for that,” Proc. SPIE 7368(1), 73681Y (2009).
14. A. I. Strukov and V. V. Serov, Pathological Anatomy. A Textbook (Meditsina, Moscow, 1995).