УДК: 544.23.022
The formation of optical phase structures in the volume of phosphate glasses by means of thermal diffusion caused by the action of femtosecond laser radiation
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Маньшина А.А., Поволоцкий А.В., Соколов И.А., Курушкин М.В. Формирование оптических фазовых структур в объёме фосфатных стёкол за счёт термической диффузии, вызванной воздействием фемтосекундного лазерного излучения // Оптический журнал. 2015. Т. 82. № 2. С. 72–81.
Manshina A.A., Povolotskiy A.V., Sokolov I.A., Kurushkin M.V. The formation of optical phase structures in the volume of phosphate glasses by means of thermal diffusion caused by the action of femtosecond laser radiation [in Russian] // Opticheskii Zhurnal. 2015. V. 82. № 2. P. 72–81.
A. A. Man’shina, A. V. Povolotskiĭ, I. A. Sokolov, and M. V. Kurushkin, "The formation of optical phase structures in the volume of phosphate glasses by means of thermal diffusion caused by the action of femtosecond laser radiation," Journal of Optical Technology. 82(2), 120-126 (2015). https://doi.org/10.1364/JOT.82.000120
This paper discusses the physicochemical properties (density, microhardness, thermal effects, electrical conductivity, calculated volumes of fluctuation microvoids, and spectral studies) of phosphate and niobium–phosphate glasses containing lithium, sodium, and potassium oxides. It shows that, when one alkali oxide is replaced by another equivalent one, there is a nonlinear variation of the electric parameters, while all the other parameters vary linearly. Scanning with a femtosecond laser in the volume of lithium (sodium) niobium–phosphate glass produces high-contrast optical elements by means of the diffusion of lithium (sodium) ions from the focal center to the edges and counterdisplacement of niobium from the edges to the center.
niobium–phosphate glasses, physicochemical properties, lithium thermal diffusion, femtosecond laser scanning, high-contrast optical elements
Acknowledgements:This work was carried out with the financial support of the Ministry of Education and Science of the Russian Federation as part of Contract No. 14.576.21.0003.
OCIS codes: 160.2750, 130.27550
References:1. L. Tong, R. R. Gattas, I. Maxwell, J. B. Ashcom, and E. Mazur, “Optical loss measurements in femtosecond-laser-written waveguides in glass,” Opt. Commun. 259, 626 (2006).
2. Y. Cheng, K. Sugioka, and K. Midorikawa, “Microfabrication of 3D hollow structures embedded in glass by femtosecond laser for lab-on-a-chip applications,” Appl. Surf. Sci. 248, 172 (2005).
3. H. Hosono, K. Kawamura, S. Matsuishi, and M. Hirano, “Holographic writing of micro-gratings and nanostructures on amorphous SiO2 by near-infrared femtosecond pulses,” Nucl. Instrum. Methods Phys. Res. Sect. B 191, 89 (2002).
4. D. S. Sanditov, “Estimating the volume of fluctuation microvoids in silicate glasses,” Fiz. Khim. Stekla 3, 580 (1977).
5. D. E. C. Corbridge, “The structural chemistry of phosphorus compounds,” Top. Phosphorus Chem. 3, 57 (1966).
6. A. N. Lazarev, A. P. Mirgorodskiı˘, and I. S. Ignat’ev, Vibrational Spectra of Complex Oxides. Silicates and Their Analogs (Leningrad, 1975).
7. E. F. de Almeida, J. A. C. de Paiva, and A. S. B. Sombra, “Infrared and complex dielectric function studies of LiNbO3 in niobate glass-ceramics,” Mater. Sci., No. 6, 1555 (2000).
8. J. S. de Andrade, A. G. Pinheiro, I. F. Vascocelos, J. M. Sasaki, J. A. C. de Paiva, M. A. Valente, and A. S. B. Sombra, “Raman and infrared spectra of KNbO3 in niobate ceramics,” Phys. Condens. Matter, No. 22, 4451 (1999).
9. E. B. de Araujo, J. A. C. de Paiva, M. A. B. de Araujo, and A. S. B. Sombra, “Structure and optical properties of lithium niobium-phosphate glasses,” Phys. Status Solidi, No. 1, 231 (1996).
10. M. A. Valente, L. Bih, H. Bih, and M. P. F. Graça, “Crystallization and physical properties of alkali phosphomolybdate glasses containing niobium oxide,” Phys. Status Solidi C 8, 3091 (2011).
11. I. O. Mazali, L. C. Barbosa, and O. L. Alves, “Preparation and characterization of new niobophosphate glasses in the Li 2O–Nb2 O5–CaO–P 2O5 system,” Mater. Sci., No. 6, 1987 (2004).
12. R. R. Rakhimov, V. J. Turney, D. E. Jones, S. N. Dobryakov, and Y. A. Borisov, “Electron paramagnetic resonance and quantum-mechanical analysis of binuclear niobium clusters in lithium-niobium phosphate glasses,” Chem. Phys. 118, 6017 (2003).
13. S. Lee, H. Yoon, I. Yoon, and B. Kim, “Single crystalline NbO2 nanowire synthesis by chemical vapor transport,” Method Bull. Korean Chem. Soc. 33, 839 (2012).
14. K. L. Ngai, “A review of critical experimental facts in electrical relaxation and ionic diffusion in ionically conducting glasses and melts,” J. Non-Cryst. Solids 203, 232 (1996).
15. A. A. Pronkin, I. V. Murin, I. A. Sokolov, and Yu. N. Ustinov, “Physicochemical properties of the glasses of the Li2 O–P 2 O5 system,” Fiz. Khim. Stekla 23, 547 (1997).
16. A. A. Pronkin, I. A. Sokolov, V. N. Naraev, and M. N. Loseva, “Electrochemical study of the ionic conductivity of lithium aluminofluorophosphate glasses,” Fiz. Khim. Stekla 22, 728 (1996).
17. I. A. Sokolov, A. A. Il’in, Yu. N. Ustinov, N. A. Valova, and A. A. Pronkin, “Study of the charge-carrier migration mechanism in glasses of the Li2 O–P 2O 5 and LiF–LiPO3 systems,” Fiz. Khim. Stekla 29, 421 (2003).