УДК: 535.512
Evolution of a circularly polarized beam bearing an optical vortex with fractional topological charge in a uniaxial crystal
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Погребная А.О., Рыбась А.Ф. Эволюция циркулярно-поляризованного пучка, переносящего оптический вихрь с дробным топологическим зарядом в одноосном кристалле // Оптический журнал. 2016. Т. 83. № 10. С. 7–11.
Pogrebnaya A.O., Rybas A.F. Evolution of a circularly polarized beam bearing an optical vortex with fractional topological charge in a uniaxial crystal [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 10. P. 7–11.
A. O. Pogrebnaya and A. F. Rybas, "Evolution of a circularly polarized beam bearing an optical vortex with fractional topological charge in a uniaxial crystal," Journal of Optical Technology. 83(10), 586-589 (2016). https://doi.org/10.1364/JOT.83.000586
We show that when a beam propagates through a uniaxial crystal, the resultant spin-orbit coupling gives rise to oscillations in the projected spin and the orbital angular momentum flux. We find that the handedness of the beam reverses with increasing angle between the axis of the crystal and the optical axis of a circularly polarized beam bearing an optical vortex with fractional topological charge l=½. The spin angular momentum is converted into orbital angular momentum, and the topological charge doubles to l=1. We describe the processes for creation and annihilation of polarization singularities in a beam bearing an optical vortex with fractional topological charge. We construct evolutionary trajectories for polarization singularities in a circularly polarized Gaussian beam bearing an optical vortex with fractional topological charge in a uniaxial crystal.
optical vortex, uniaxial crystal, fractional topological charge, polarization singularities
OCIS codes: 260.6042; 050.4865; 260.1180
References:1. I. Basistiy, V. Pas’ko, V. Slyusar, M. Soskin, and M. Vasnetsov, “Synthesis and analysis of optical vortices with fractional topological charges,” J. Opt. A 6, 166–169 (2004).
2. Y. Egorov, V. Konovalenko, A. Zinovev, M. Nesterova, and M. Glumova, “Algebra of optical quarks: an experiment,” Proc. SPIE 9066, 90660C (2013).
3. T. A. Fadeyeva, “Hidden chains of optical vortices generated using a corner of phase wedge,” Ukr. J. Phys. Opt. 14, 57–69 (2013).
4. A. Kovalyova, A. Markovskyy, T. Fadeyeva, and A. Rubass, “Generation of fractional optical vortices at the edge of the phase wedge,” Proc. SPIE 9066, 90660G (2013).
5. A. V. Volyar, “Do optical quarks exist in the free space? A scalar treatment,” Ukr. J. Phys. Opt. 14, 31–43 (2013).
6. T. A. Fadeyeva, A. F. Rubass, and A. V. Volyar, “The matrix model of vortex-beam quadrefringence in a uniaxial crystal,” Ukr. J. Phys. Opt. 10(3), 109–123 (2009).
7. T. Fadeyeva, A. F. Rubass, and A. V. Volyar, “Transverse shift of a high-order paraxial vortex-beam induced by a homogeneous anisotropic medium,” Phys. Rev. A 79(5), 53815 (2009).
8. A. Ciattoni, G. Cincotti, and C. Palma, “Angular momentum dynamics of a paraxial beam in a uniaxial crystal,” Phys. Rev. E 67, 36618 (2003).
9. J. F. Nye, Natural Focusing and Fine Structure of Light: Caustics and Wave Dislocations (Institute of Physics Publishing, Bristol, 1999).