УДК: 621.373
Single-coordinate filter with variable transmission across aperture
Full text «Opticheskii Zhurnal»
Full text on elibrary.ru
Publication in Journal of Optical Technology
Бельков С.А., Воронич И.Н., Гаранин С.Г., Зималин Б.Г., Сизмин Д.В. Однокоординатный фильтр с переменным по апертуре пропусканием // Оптический журнал. 2016. Т. 83. № 3. С. 48–54.
Belkov S.A., Voronich I.N., Garanin S.G., Zimalin B.G., Sizmin D.V. Single-coordinate filter with variable transmission across aperture [in Russian] // Opticheskii Zhurnal. 2016. V. 83. № 3. P. 48–54.
S. A. Bel’kov, I. N. Voronich, S. G. Garanin, B. G. Zimalin, and D. V. Sizmin, "Single-coordinate filter with variable transmission across aperture," Journal of Optical Technology. 83(3), 175-180 (2016). https://doi.org/10.1364/JOT.83.000175
A filter that shapes a laser beam to achieve a specified spatial intensity profile along a single coordinate is developed and studied. The filter consists of a diffractive element fabricated by laser-etching the surface of a transparent dielectric plate and a spatial angle selector. The diffractive element has a radiation damage threshold of 6 J/cm2 at pulse width 3 ns. A three-dimensional intensity profile in the form of a parabola extending along one coordinate was experimentally produced; this intensity profile is used to compensate for spatial distortion of the beam in the main gain beamline of high-power neodymium laser systems.
diffractive element, spatial profile, laser cutting, square aperture, angular selection
OCIS codes: 110.1220, 110.6980, 140.3300
References:1. S. W. Bahk, I. A. Begishev, and J. D. Zuegel, “Precompensation of gain nonuniformity in a Nd:glass amplifier using a programmable beam-shaping system,” Opt. Commun. 333, 45–52 (2014).
2. B. M. Van Wonterghem, J. T. Salmon, and R. W. Wilcox, “Beamlet pulse-generation and wavefront-control system,” LLNL Q. Rep. 5(1), 42–51 (1994).
3. I. K. Krasyuk, S. G. Lukishova, D. M. Margolin, P. P. Pashinin, A. M. Prokhorov, and V. D. Terekhov, “Induced-absorption soft apertures,” Pisma Zh. Tekh. Fiz. 2(13), 577–581 (1976).
4. S. B. Papernyi, V. A. Serebryakov, and V. E. Yashin, “Formation of a smooth transverse distribution of intensity in a light beam by a phase-rotating plate,” Sov. J. Quantum Electron. 8(9), 1165–1166 (1978) [Kvant. Elektron. 5(9), 2059–2060 (1978)].
5. S. G. Lukishova, S. A. Kovtonuk, A. A. Ermakov, P. P. Pashinin, E. E. Platov, A. S. Svakhin, and A. A. Golubsky, “Dielectric films deposition with cross-section variable thickness for amplitude filters on the basis of frustrated total internal reflection,” Proc. SPIE 1270, 260–271 (1991).
6. C. Dorrer and J. D. Zuegel, “Design and analysis of binary beam shapers using error diffusion,” J. Opt. Soc. Am. 24(6), 1268–1275 (2007).
7. C. Dorrer, “High-damage-threshold beam shaping using binary phase plates,” Opt. Lett. 34(15), 2330–2332 (2009).
8. K. L. Marshall, S. K.-H. Wei, M. Vargas, K. Wegman, C. Dorrer, P. Leung, J. Boule III, Z. Zhao, and S. H. Chen, “Liquid crystal beam-shaping devices employing patterned photoalignment layers for high-peak-power laser applications,” Proc. SPIE 8114, 8114P (2011).
9. J. M. Auerbach, “Modeling beam propagation and frequency conversion for the Beamlet laser,” LLNL Q. Rep. 5(1), 80–85 (1994).
10. Yu. K. Danileı˘ko, A. A. Manenkov, and V. S. Nechitailo, “Investigation of bulk laser damage and light scattering in crystals and glasses,” Tr. Fiz. Inst. Akad. Nauk 101, 31–74 (1978).
11. I. V. Epatko, A. A. Malyutin, R. V. Serov, D. A. Solovev, and A. D. Chulkin, “New algorithm for numerical simulation of the propagation of laser radiation,” Quantum Electron. 28(8), 697 (1998) [Kvant. Elektron. 25(8), 717–722 (1998)].
12. G. I. Babayants, S. G. Garanin, V. G. Zhupanov, E. V. Klyuev, A. V. Savkin, S. A. Sukharev, and O. A. Sharov, “Development and study of dielectric coatings with a high radiation resistance,” Quantum Electron. 35(7), 663–666 (2005) [Kvant. Elektron. 35(7), 663–666, (2005)].
13. B. G. Zimalin, A. V. Savkin, O. A. Sharov, and S. A. Sukharev, “Device for determining the radiation damage threshold of optical components,” Russian Patent 90205 (2009).